Advertisement

Science and Society: A Reflexive Approach to Official Statistics

  • Walter J. RadermacherEmail author
Chapter

Abstract

In this chapter, we open a large box with questions and reflections about the scientific background of official statistics. First, it will be about knowledge: how can we know that we know what we know (or do not know)? Then we will shed light on the social position, role and function of statistics (in the sense of science, information and institution). Some episodes from the history of official statistics are used for clarification. Finally, two concrete and current applications will conclude the chapter: Indicators and Sustainable Development. But first, a methodology is presented that provides a holistic roadmap through this extremely broad topic, the ‘System of Profound Knowledge’ by W. E. Deming.

References

  1. Ackoff, Russell. 1994. From Mechanistic to Social Systemic Thinking. In Systems Thinking in Action Conference.Google Scholar
  2. Adams, Douglas. 1981. The Hitchhiker’s Guide to the Galaxy. Pocket Books.Google Scholar
  3. Allen, Peter M. 2000. Knowledge, Ignorance, and Learning. Emergence, Complexity and Organisation 2: 78–103.Google Scholar
  4. Andrews, Tom. 2012. What is Social Constructionism? In Grounded Theory Review. Mill Valley: Sociology Press.Google Scholar
  5. Ayres, Robert U., and Udo Ernst Simonis. 1994. Industrial Metabolism: Restructuring for Sustainable Development. Tokyo, New York: United Nations University Press.Google Scholar
  6. Barbieri, Giovanni A. 2018, forthcoming. Statistics, Reality, Truth. In 10th ICOTS Conference. Kyoto.Google Scholar
  7. Beck, Ulrich. 1998. Risk Society Towards a New Modernity. London: Sage.Google Scholar
  8. Benessia, A., S. Funtowicz, M. Giampietro, A. Guimaraes Pereira, J. Ravetz, R. Strand, A. Saltelli, and J.P. van der Sluijs. 2016. The Rightful Place of Science: Science on the Verge. Tempe, AZ: Consortium for Science, Policy and Outcomes.Google Scholar
  9. Bowker, Geoffrey C., and Susan Leigh Star. 2000. Sorting Things Out Classification and Its Consequences. Cambridge, MA: The MIT Press.Google Scholar
  10. Box, George E.P. 1976. Science and Statistics. Journal of the American Statistical Association 71: 791–799.MathSciNetzbMATHCrossRefGoogle Scholar
  11. Brandolini, Andrea. 2016. The Links Between Household Surveys and Macro Aggregates. In DGINS Conference 2016, ed. Statistics Austria. Vienna: Statistics Austria.Google Scholar
  12. Bröckling, Ulrich, Susanne Krasmann, Thomas Lemke, and Michel Foucault. 2000. Gouvernementalität der Gegenwart: Studien zur Ökonomisierung des Sozialen. Frankfurt am Main: Suhrkamp.Google Scholar
  13. Brown, W. 2015. Undoing the Demos: Neoliberalism’s Stealth Revolution. Cambridge, MA: MIT Press.Google Scholar
  14. Bubrowski, Helene. 2017. Das geschätzte Volk. Frankfurter Allgemeine 24 (10): 2017.Google Scholar
  15. Bundesverfassungsgericht. 1983. BVerfG · Urteil vom 15. Dezember 1983 · Az. 1 BvR 209/83, 1 BvR 484/83, 1 BvR 420/83, 1 BvR 362/83, 1 BvR 269/83, 1 BvR 440/83 (Volkszählungsurteil), ed. Bundesverfassungsgericht. Karlsruhe: openjur.Google Scholar
  16. Bundesverfassungsgericht. 2017. Mündliche Verhandlung in Sachen “Zensus 2011” am Dienstag, 24. Oktober 2017, ed. Bundesverfassungsgericht. Karlsruhe: Bundesverfassungsgericht.Google Scholar
  17. Bundesverfassungsgericht. 2018. Zensus 2011 - 2 BvF 1/15 - Rn. (1-357). In Bundesverfassungsgericht. Bundesverfassungsgericht.Google Scholar
  18. Burchell, Graham, Colin Gordon, Peter Miller, and Michel Foucault. 1991. The Foucault Effect: Studies in Governmentality: With Two Lectures by and an Interview with Michael Foucault. London: Harvester Wheatsheaf.CrossRefGoogle Scholar
  19. Cassata, Francesco. 2017. Eugenics Archive—Italy. Social Sciences and Research Council of Canada. http://eugenicsarchive.ca/discover/world/530b9b5a76f0db569b000010.
  20. Cavanillas, José María, Edward Curry, and Wolfgang Wahlster (eds.). 2018. New Horizons for a Data-Driven Economy—A Roadmap for Usage and Exploitation of Big Data in Europe. Springer Nature.Google Scholar
  21. Cherrier, Beatrice. 2017. The Making of Economic Facts: A Reading List. In The Undercover Historian—Beatrice Cherrier’s blog.Google Scholar
  22. Cilliers, Paul. 2000. Knowlege, Complexity, and Understanding. Emergence, Complexity and Organisation 2: 7–13.Google Scholar
  23. Clouet, Hadrien. 2015. Le “chômage BIT”: comparaison facile, comparaison fragile? In Sozialstaat/État Social, ed. Saisir L’Europe. Berlin/Paris: Saisir l’Europe.Google Scholar
  24. Cook, Eli. 2017. The Pricing of Progress—Economic Indicators and the Capitalization of American Life. Harvard: Harvard University Press.CrossRefGoogle Scholar
  25. Coyle, D. 2014. GDP: A Brief but Affectionate History. Princeton: Princeton University Press.Google Scholar
  26. Coyle, D. 2015. GDP: A Brief but Affectionate History. Princeton University Press.Google Scholar
  27. Daly, Herman E. 1987. A.N. Whitehead’s Fallacy of Misplaced Concreteness: Examples from Economics. Journal of Interdisciplinary Economics 2: 83–89.CrossRefGoogle Scholar
  28. Dasgupta, Rana. 2018. The Demise of the Nation State, The Guardian, Thu April 5, 2018.Google Scholar
  29. Davies, William. 2016. The Limits of Neoliberalism—Authority, Sovereignty and the Logic of Competition. London: SAGE Publications.Google Scholar
  30. Davies, William. 2018. Nervous States—How Feeling Took Over the World. London: Vintage Publishing.Google Scholar
  31. Davies, William. 2017. How Statistics Lost Their Power—And Why We Should Fear What Comes Next. The Guardian.Google Scholar
  32. Davis, Kevin E., Angelina Fisher, Bendict Kingsburry, and Sally Engle Merry. 2012a. Governance by Indicators—Global Power Through Quantification and Rankings. Oxford: Oxford University Press.CrossRefGoogle Scholar
  33. Davis, Kevin E., Benedict Kingsburry, and Sally Engle Merry. 2012b. Introduction: Global Governance by Indicators. In Governance by Indicators: Global Power Through Quantification and Rankings, ed. Kevin E. Davis, Benedict Kingsburry, and Sally Engle Merry. Oxford: Oxford University Press.Google Scholar
  34. De Smedt, Marleen, Enrico Giovannini, and Walter J. Radermacher. 2018. Measuring Sustainability. In For Good Measure: Advancing Research on Well-being Metrics Beyond GDP, ed. Joseph E. Stiglitz, Jean-Paul Fitoussi, and Martine Durand. Paris: OECD Publishing.Google Scholar
  35. De Michelis, Alberto, and Alain Chantraine. 2003. Memoirs of Eurostat—Fifty Years Serving Europe. Luxembourg: Publication Office of the European Union.Google Scholar
  36. Deming, W.E. 2000. The New Economics: For Industry, Government, Education. Massachusetts Institute of Technology, Center for Advanced Engineering Study.Google Scholar
  37. Desrosières, Alain. 1998. The Politics of Large Numbers—A History of Statistical Reasoning. Cambridge, MA: Harvard University Press.zbMATHGoogle Scholar
  38. Desrosières, Alain. 2001. How Real Are Statistics? Four Possible Attitudes. Social Research 68: 339–355.Google Scholar
  39. Desrosières, Alain. 2002. Adolphe Quetelet. Courrier des statistiques 104: 3–8.Google Scholar
  40. Desrosières, Alain. 2010. A Politics of Knowledge-Tools—The Case of Statistics. In Between Enlightenment and Disaster, ed. Linda Sangolt. Brussels: P.I.E. Peter Lang.Google Scholar
  41. Desrosières, Alain. 2011. Words and Numbers—For a Sociology of the Statistical Argument. In The Mutual Construction of Statistics and the Society, ed. Ann Rudinow Saetnan, Heidi Mork Lomell, and Svein Hammer. New York: Routledge.Google Scholar
  42. DGINS. 2016. Vienna Memorandum. In DGINS Conference 2016, ed. Statistics Austria. Vienna: Statistics Austria.Google Scholar
  43. Diaz-Bone, Rainer, and Emmanuel Didier (eds.). 2016. Conventions and Quantification—Transdisciplinary Perspectives on Statistics and Classifications.Google Scholar
  44. Dixson-Declève, Sandrine, Jørgen Randers, and Anders Wijkman. 2018. The Club of Rome to William Nordhaus and the Nobel Committee: “Pursue Profitability—Even at the Cost of the Planet?!”. Zurich: Club of Rome.Google Scholar
  45. Dreyblatt, A., and E. Blume. 2006. Innocent Questions. Consortium Book Sales & Dist.Google Scholar
  46. Ehrlich, Paul R., and John P. Holdren. 1971. Impact of Population Growth. Science 171: 1212–1217.CrossRefGoogle Scholar
  47. Eugenicsarchive. 2018. Eugenics Archives—What Sorts of People Should There Be? Social Sciences and Humanities Research Council of Canada, Accessed 28.05.2018. http://eugenicsarchive.ca/.
  48. European Commission. 2010. Report on Greek Government Deficit and Debt Statistics. Brussels: European Commission.Google Scholar
  49. European Commission. 2018. Report from the Commission to the European Parliament and the Council on the Quality of Fiscal Data Reported by Member States in 2017. Brussels: European Commission.Google Scholar
  50. Eurostat. 2014. Part 1—Indicator Typologies and Terminologies. Luxembourg: Eurostat.Google Scholar
  51. Eurostat. 2015a. Annual National Accounts—How ESA 2010 Has Changed the Main GDP Aggregates. Eurostat, Accessed 23.04.2018. http://ec.europa.eu/eurostat/statistics-explained/index.php/Annual_national_accounts_-_how_ESA_2010_has_changed_the_main_GDP_aggregates.
  52. Eurostat. 2015b. Quality of Life in Europe—Facts and Views—Overall Life Satisfaction. Eurostat, Accessed 23.04.2018. http://ec.europa.eu/eurostat/statistics-explained/index.php/Quality_of_life_in_Europe_-_facts_and_views_-_overall_life_satisfaction.
  53. Eurostat. 2017a. Part 2—Communicating Through Indicators. Luxembourg: Eurostat.Google Scholar
  54. Eurostat. 2017b. Part 3—Relevance of Indicators for Policy Making. Luxembourg: Eurostat.Google Scholar
  55. Eurostat. 2017c. Sustainable Development in the European Union—2017 Edition. In Statistical Books, ed. Eurostat. Luxembourg: Eurostat.Google Scholar
  56. Eurostat. 2017d. Unemployment Statistics and Beyond. Eurostat, Accessed 10.04.2018. http://ec.europa.eu/eurostat/statistics-explained/index.php?title=Unemployment_statistics_and_beyond.
  57. Ewald, François. 1991. Spiele der Wahrheit Michel Foucaults Denken. Frankfurt am Main: Suhrkamp.Google Scholar
  58. Eyraud, Corine. 2018. Stakeholder Involvement in the Statistical Value Chain: Bridging the Gap Between Citizens and Official Statistics. In Power from Statistics: Data, Information and Knowledge—Outlook Report—2018 Edition, ed. Eurostat. Luxembourg: Publication Office of the European Union.Google Scholar
  59. Foucault, Michel. 1991. Governmentality. In The Foucault Effect, ed. Graham Burchell, Colin Gordon, and Peter Miller. Chicago: Chicago University Press.Google Scholar
  60. Foucault, Michel. 1978. «La governamentalità» («La gouvernementalité»). Accessed 24.08.2018. http://1libertaire.free.fr/MFoucault136.html.
  61. Fremdling, Rainer. 2016. Zur Bedeutung nationalsozialistischer Statistiken und Statistiker nach dem Krieg - Rolf Wagenführ und der United States Strategic Bombing Survey (USSBS). Jahrbuch für Wirtschaftsgeschichte 57: 589–613.CrossRefGoogle Scholar
  62. Fried, Samantha J. 2014. Quantify This: Statistics, the State, and Governmentality. Georgetown University.Google Scholar
  63. Fukuda-Parr, Sakiko. 2015. Global Goals as a Policy Tool: Intended and Unitended Consequences. In The MDGs, Capabilities and Human Rights, ed. Sakiko Fukuda-Parr and Alicia Ely Yamin. New York: Routledge.Google Scholar
  64. Fukuda-Parr, Sakiko. 2017. United Nations High Level Political Forum Opening Panel, July 10, 2017—Statement by Sakiko Fukuda-Parr. New York: United Nations.Google Scholar
  65. Fukuda-Parr, Sakiko. 2018. Is goal setting a good way to define global development agendas? In European Commission Workshop the Impacts and Methodology of Indicators and Scoreboards. Ispra, Italy: Joint Research Center.Google Scholar
  66. Fukuda-Parr, Sakiko, Alicia Ely Yamin, and Joshua Greenstein. 2014. The Power of Numbers: A Critical Review of Millennium Development Goal Targets for Human Development and Human Rights. Journal of Human Development and Capabilities: A Multi-Disciplinary Journal for People-Centered Development 15: 1–13.CrossRefGoogle Scholar
  67. Funtowicz, Silvio O., and Jerome R. Ravetz. 1993. Science for the Post-normal Age. Futures 25: 739–755.CrossRefGoogle Scholar
  68. Gelfert, Axel. 2016. How to Do Science with Models—A Philosophical Primer. Switzerland: Springer.CrossRefGoogle Scholar
  69. GfdS. 2016. «GfdS wählt» postfaktisch «zum Wort des Jahres 2016», ed. Gesellschaft für Deutsche Sprache. Wiesbaden.Google Scholar
  70. Goldsmiths. 2018. Arithmus—Peopling Europe: How Data Make a People. Goldsmiths—University of London. Accessed 28.05.2018. http://arithmus.eu/.
  71. GreatBritain. 1981. Statistical Services in the Civil Service Department: Report by the Rayner Survey Officer and Statement of Decisions by Ministers: Rayner Review of Government Statistical Services, ed. Civil Service Department. London ([Whitehall, SW1A 2AZ]): The Department.Google Scholar
  72. Grohmann, Heinz. 1985. Vom theoretischen Konstrukt zum statistischen Begriff - Das Adäquationsproblem. Allgemeines Statistisches Archiv 69: 1–15.MathSciNetGoogle Scholar
  73. Gueye, Gallo. 2016. Closing gaps and producing official statistics on Income, Consumption and Wealth (ICW). In DGINS Conference 2016, ed. Statistics Austria. Vienna: Statistics Austria.Google Scholar
  74. Hacking, Ian. 1991. How Should We Do the History of Statistics? In The Foucault Effect—Studies in Governmentality, ed. Graham Burchell, Colin Gordon, and Peter Miller. Chicago: University of Chicago Press.Google Scholar
  75. Hall, Jon, and Louise Rickard. 2013. People, Progress and Participation—How Initiatives Measuring Social Progress Yield Benefits Beyond Better Metrics. Gütersloh: Bertelsmann Stiftung.Google Scholar
  76. Hammer, Svein. 2011. Governing by Indicators and Outcomes: A Neo-liberal Governmentality? In The Mutual Construction of Statistics and Society, ed. Ann Rudinow Saetnan, Heidi Mork Lomell, and Svein Hammer. New York: Routledge.Google Scholar
  77. Hand, David J. 2009. Modern Statistics: The Myth and the Magic. Journal of the Royal Statistical Society 2009: 287–306.MathSciNetCrossRefGoogle Scholar
  78. Hendricks, Vincent F., and Mads Vestergaard. 2018. Postfaktisch - Die neue Wirklichkeit in Zeiten von Bullshit, Fake News und Verschwöruungstherien. München: Karl Blessing Verlag.Google Scholar
  79. Horn, David G. 1994. Social Bodies—Science, Reproduction, and Italian Modernity. Princeton University Press: Princeton.Google Scholar
  80. Hufe, Paul, Ravi Kanbur, and Andreas Peichl. 2018. Measuring Unfair Inequality: Reconciling Equality of Opportunity and Freedom from Poverty. In CESifo Working Paper No. 7119, 1–47. Munich: Munich Society for the Promotion of Economic Research-CESifo GmbH.Google Scholar
  81. Hunter, John. 2015. Myth: If You Can’t Measure It, You Can’t Manage It. In The W. Edwards Deming Institute Blog, ed. The Deming Institute. The Deming Institute.Google Scholar
  82. Jasanoff, Sheila. 2004a. States of Knowledge: The Co-production of Science and the Social Order. London: Routledge.CrossRefGoogle Scholar
  83. Jasanoff, Sheila (ed.). 2004b. States of Knowledge: The Co-production of Science and the Social Order. New York: Taylor & Francis.Google Scholar
  84. Kakutani, M. 2018. The Death of Truth: Notes on Falsehood in the Age of Trump. Crown/Archetype.Google Scholar
  85. Kim, Sung Ho. 2012. Max Weber. In The Stanford Encyclopedia of Philosophy, ed. Edward N. Zalta. Stanford: Metaphysics Research Lab, Stanford Universit.Google Scholar
  86. König, Ariane. 2015. Sustainability Science. Sustainability Hub.Google Scholar
  87. König, Ariane (ed.). 2018a. Sustainability Science. New York: Routledge.Google Scholar
  88. König, Ariane. 2018b. Sustainability Science as a Transformative Social Learning Process. In Sustainability science, ed. Ariane König. New York: Routledge.Google Scholar
  89. Kumar, Manasi, and Pushbam Kumar. 2008. Valuation of the Ecosystem Services: A Psycho-cultural Perspective. Ecological Economics.CrossRefGoogle Scholar
  90. Küppers, Bernd-Olaf. 2018. The Computability of the World: How Far Can Science Take Us? Springer International Publishing.Google Scholar
  91. Lægreid, Per. 2017. New Public Management. In Oxford Research Encyclopedia, Politics (politics.oxfordre.com), ed. Oxford University Press.Google Scholar
  92. Lægreid, Per, and Tom Christensen (eds.). 2007. Transcending New Public Management—The Transformation of Public Sector Reforms. London: Routledge.Google Scholar
  93. Larivière, Vincent, and Cassidy R. Sugimoto. 2018 (forthcoming). The Journal Impact Factor: A Brief History, Critique, and Discussion of Adverse Effects. In Springer Handbook of Science and Technology Indicators, ed. W. Glänzel, H.F. Moed, U. Schmoch, and M. Thelwall. Cham, Switzerland: Springer International Publishing.CrossRefGoogle Scholar
  94. Latour, Bruno. 1987. Science in Action. Cambridge, MA.Google Scholar
  95. Lehtonen, Markku. 2015. Indicators: Tools for Informing, Monitoring or Controlling? In The Tools of Policy Formulation—Actors, Capacities, Venues and Effects, ed. Andrew J. Jordan and John R. Turnpenny. Cheltenham: Edward Elgar Publishing.Google Scholar
  96. Lupton, Deborah. 2013. Risk_2nd_edition. London: Routledge.Google Scholar
  97. Maggino, Filomena. 2017. Complexity in Society: From Indicators Construction to their Synthesis. Springer International Publishing.Google Scholar
  98. Marquard, O. 2003. Zukunft braucht Herkunft: philosophische Essays. Reclam.Google Scholar
  99. Merali, Yasmin, and David J. Snowdon. 2000. Special Editors’ Note: Complexity and Knowledge Management. Emergence: Complexity and Organization 2: 5–6.Google Scholar
  100. Merry, Sally Engle. 2011. Measuring the World—Indicators, Human Rights, and Global Governance. Current Anthropology 52 (Suppl 3).MathSciNetCrossRefGoogle Scholar
  101. Minorities, The Centre for Studies of the Holocaust and Religious. 2018. ‘Innocent questions’, The Centre for Studies of the Holocaust and Religious Minorities. Accessed 28.05.2018. https://publicartnorway.org/prosjekter/the-center-for-studies-of-the-holocaust-and-religious-minorities/.
  102. Mitroff, Ian I. 2019. Technology Run Amok—Crisis Management in the Digital Age. Cham: Palgrave Macmillan.CrossRefGoogle Scholar
  103. Moen, Ronald D., and Clifford L. Norman. 2016. Always Applicable—Deming’s System of Profound Knowledge Remains Relevant for Management and Quality Professionals Today. Quality Progress.Google Scholar
  104. Mügge, Daniel K. 2019. The Revenge of Political Arithmetick. Economic Statistics and Political Purpose. In Fickle Formulas, 27. Amsterdam: University of Amsterdam.Google Scholar
  105. OECD, and EuropeanCommission_JRC. 2008. Handbook on Constructing Composite Indicators—Methodology and User Guide. Paris: OECD.Google Scholar
  106. O’Neil, C. 2016. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Crown.Google Scholar
  107. O’Neill, Daniel W., Andrew L. Fanning, William F. Lamb, and Julia K. Steinberger. 2018. A Good Life for All Within Planetary Boundaries. Nature Sustainability 1: 88–95.CrossRefGoogle Scholar
  108. PARIS 21. 2017. Improving lives through better statistics. http://www.paris21.org.
  109. Patriarca, Silvana. 1996. Numbers and Nationhood—Writing Statistics in Nineteenth-Century Italy. Cambride: Cambride University Press.CrossRefGoogle Scholar
  110. Peruzzi, Alberto. 2017. Complexity: Between Rhetoric and Science. In Complexity in Society: From Indicators Construction to their Synthesis, ed. F. Maggino. Springer International Publishing.Google Scholar
  111. Piketty, T. 2014. Capital in the Twenty-First Century. Harvard University Press.Google Scholar
  112. Population Matters. 2018. Population “Factfulness”—Where Hans Rosling Goes Wrong. Population Matters, Accessed 04.09.2018. https://populationmatters.org/news/2018/04/09/population-%E2%80%9Cfactfulness%E2%80%9D-%E2%80%93-where-hans-rosling-goes-wrong.
  113. Porter, M.E. 1980. Competitive Strategy: Techniques for Analyzing Industries and Competitors. Free Press.Google Scholar
  114. Porter, M.E. 1990. Competitive Advantage of Nations. Free Press.Google Scholar
  115. Porter, Theodore M. 1995. Trust in Numbers: The Pursuit of Objectivity in Science and Public Life. Princeton, N.J., Chichester: Princeton University Press.Google Scholar
  116. Porter, Theodore M. 2004. Karl Pearson: The Scientific Life in a Statistical Age. Princeton, NJ; Oxford: Princeton University Press.zbMATHGoogle Scholar
  117. Porter, Theodore M. 2015. The Flight of the Indicator. In The World of Indicators: The Making of Governmental Knowledge through Quantification (Cambridge Studies in Law and Society), ed. R. Rottenburg, S. Merry, S. Park, and J. Mugler. Cambridge: Cambridge University Press.Google Scholar
  118. Power, Michael. 1994. The Audit Society.Google Scholar
  119. Power, Michael. 1997. From Risk Society to Audit Society. Soziale Systeme - Zeitschrift für Soziologische Theorie 3 (1997): 3–21.Google Scholar
  120. Prigogine, I., I. Stengers, and A. Toffler. 2017. Order Out of Chaos. Verso Books.Google Scholar
  121. Pullinger, John. 2017. Statistics are Even More Important in a ‘Post-Truth’ World. The Guardian, January 24, 2017.Google Scholar
  122. Quetelet, Adolphe. 1835. Sur L’Homme et le Développement de Ses Facultes, Ou Essai de Physique Sociale. Paris: Bachelier, Imprimeur-Libraire.Google Scholar
  123. Quine, Maria Sophia. 1990. From Malthus to Mussolini—The Italian Eugenics Movement and Fascist Population Policy, 1890–1938. University College London.Google Scholar
  124. Radermacher, Walter. 1992. Methoden und Möglichkeiten der Qualitätsbeurteilung von statistischen Informationen aus der Fernerkundung/Methods and Possibilities of Assessing the Quality of Statistical Data of Remote Sensing. Jahrbücher für Nationalökonomie und Statistik 169–179.Google Scholar
  125. Radermacher, Walter. 1999. Indicators, Green Accounting and Environment Statistics: Information Requirements for Sustainable Development. International Statistical Review: A Journal of the International Statistical Institute and its Associations 67: 339–354.Google Scholar
  126. Radermacher, Walter. 2005. The Reduction of Complexity by Means of Indicators—Case Studies in the Environmental Domain. In Statistics, Knowledge and Policy—Key Indicators to Inform Decision Making, ed. OECD. Paris: OECD Publishing.Google Scholar
  127. Radermacher, Walter. 2008. Beyond GDP—Ecosystem Services as Part of Environmental Economic Accounting? In Workshop “Ecosystem Services—Solution for Problems or A Problem That Needs a Solution, ed. University Kiel. Bad Salza, Germany: University Kiel.Google Scholar
  128. Radermacher, Walter, and Carsten Stahmer. 1998. Material and Energy Flow Analysis in Germany: Accounting Framework, Information System, Applications. In Environmental Accounting in Theory and Practice, 187–211.CrossRefGoogle Scholar
  129. Radermacher, Walter J., and Anton Steurer. 2015. Do We Need Natural Capital Accounts for Measuring the Performance of Societies Towards Sustainable Development, and If So, Which Ones? Eurostat Review on National Accounts and Macroeconomic Indicators Eurona 2015: 7–18.Google Scholar
  130. Radermacher, Walter, Roland Zieschank, Regina Hoffmann-Kroll, Jo v. Nouhuys, Dieter Schäfer, and Steffen Seibel. 1998. Entwicklung eines Indikatorensystems für den Zustand der Umwelt in der Bundesrepublik Deutschland mit Praxistest für ausgewählte Indikatoren und Bezugsräume. In Schriftenreihe Beiträge zu den Umweltökonomischen Gesamtrechnungen. Wiesbaden: Statistisches Bundesamt.Google Scholar
  131. Randers, Jorgen, Johan Rockström, Per Espen Stoknes, Ulrich Golücke, David Collste, and Sarah Cornell. 2018. Transformation is Feasible—How to Achieve the Sustainable Development Goals within Planetary Boundaries—A Report to the Club of Rome, for its 50 years anniversary 17 October 2018. Stockholm: Stockholm Resilience Centre, Stockholm University, Norwegian Business School, Global Challenges Foundation.Google Scholar
  132. Ravetz, Jerome. 2018. Heuristics for Sustainability Science. In Sustainability Science, ed. Ariane König. New York: Routledge.Google Scholar
  133. Ravetz, Jerome, Paula Hild, Olivier Thunus, and Julien Bollati. 2018. Sustainability Indicators—Quality and Quantity. In Sustainability Science, ed. Ariane König. New York: Routledge.Google Scholar
  134. Restivo, Sal (ed.). 2005. Science, Technology, and Society. Oxford: Oxford University Press.Google Scholar
  135. Rosenblueth, Arturo, and Norbert Wiener. 1945. The Role of Models in Science. Philosophy of Science 12: 316–321.CrossRefGoogle Scholar
  136. Rosling, H., A.R. Rönnlund, and O. Rosling. 2018. Factfulness: Ten Reasons We’re Wrong About the World–and Why Things Are Better Than You Think. Flatiron Books.Google Scholar
  137. Rottenburg, Richard, Sally E. Merry, Sung-Joon Park Park, and Johanna Mugler (eds.). 2015. The World of Indicators—The Making of Knowledge through Quantification. Cambridge University Press.Google Scholar
  138. Royal Statistical Society. 2014. Data Manifesto, RSS. Accessed 23.04.2018. http://www.rss.org.uk/Images/PDF/influencing-change/rss-data-manifesto-2014.pdf.
  139. Ryan, Liz. 2014. ‘If You Can’t Measure It, You Can’t Manage It’: Not True. In Forbes/Leadership. Forbes.Google Scholar
  140. Saetnan, Ann Rudinow, Heidi Mork Lomell, and Svein Hammer. 2011. The Mutual Construction of Statistics and Society. New York, NY: Routledge.Google Scholar
  141. Saetnan, Ann Rudinow, Heidi Mork Lomell, and Svein Hammer. 2012. By the Very Act of Counting—The Mutual Construction of Statistics and Society. In The Mutual Construction of Statistics and Society, ed. Ann Rudinow Saetnan, Heidi Mork Lomell and Svein Hammer. New York: Routlegde.Google Scholar
  142. Sangolt, Linda. 2010a. A Century of Quantification and “Cold Calculation.” Trends in the Pursuit of Efficiency, Growth and Pre-eminence. In Between Elightenment and Disaster—Dimensions of the Political Use of Knowledge, ed. Linda Sangolt. Brussels: P.I.E. Peter Lang.Google Scholar
  143. Sangolt, Linda. 2010b. Between Enlightenment and Disaster: Dimensions of the Political Use of Knowledge. Brussels: P.I.E. Peter Lang.Google Scholar
  144. SDG16 Data Initiative. 2017. SDG16 data initiative. http://www.sdg16.org/about/.
  145. SDSN. 2017. Data, Indicators, and Follow-up & Review. http://unsdsn.org/what-we-do/data-indicators-follow-up-review/.
  146. Sébastien, Léa, Tom Bauler, and Markku Lehtonen. 2014. Can Indicators Fill the Gap Between Science and Policy? An Exploration of the (Non) Use and (Non) Influence of Indicators in EU and UK Policymaking. Nature and Culture 9: 316–343.CrossRefGoogle Scholar
  147. Seltzer, William. 2006. Historical Background and Some Current Concerns. In Innocent Questions, ed. Arnold Dreyblatt. Heidelberg: Kehrer Verlag.zbMATHGoogle Scholar
  148. Seneviratne, Amanda. 2016. Australian National Accounts: Distribution of Household Income, Consumption and Wealth. In DGINS Conference 2016, ed. Statistics Austria. Vienna: Statistics Austria.Google Scholar
  149. Sitglitz, Joseph E. 2019. Trump’s Most Worrisome Legacy. In Project Syndicate. Prague.Google Scholar
  150. Soma, Katrine, Bertrum H. MacDonald, Catrien J.A.M. Termeer, and Paul Opdam. 2016. Introduction Article: Informational Governance and Environmental Sustainability. Current Opinion in Environmental Sustainability 2016: 131–139.CrossRefGoogle Scholar
  151. Stamhuis, Ida H. 2008. Statistical Thought and Practice. A Unique Approach in the History and Development of Sciences? In The Statistical Mind in Modern Society. The Netherlands 1850–1940, ed. I.H. Stamhuis, P.M.M. Klep and J.G.S.J. van Maarseveen. Amsterdam: aksant.Google Scholar
  152. Star, Susan Leigh, and J.R. Griesemer. 1989. Institutional Ecology, ‘Translations’ and Boundary Objects: Amateurs and Professionals in Berkeley’s Museum of Vertebrate Zoology, 1907–39. Social Studies of Science 19: 387–420.CrossRefGoogle Scholar
  153. Stengers, Isabelle. 2004. The Challenge of Complexity: Unfolding the Ethics of Science—In Memoriam Ilya Prigogine. ECO Special Double Issue 6: 92–99.Google Scholar
  154. Stengers, I., M. Chase, and B. Latour. 2014. Thinking with Whitehead: A Free and Wild Creation of Concepts. Harvard University Press.Google Scholar
  155. Stiglitz, Joseph E., Amartya Sen, and Jean-Paul Fitoussi. 2009. Report by the Commission on the Measurement of Economic and Social Progress.Google Scholar
  156. Stiglitz, Joseph E., Jean-Paul Fitoussi, and Martine Durand (eds.). 2018b. For Good Measure, Advancing Research on Well-being, Metrics Beyond GDP. Paris: OECD Publishing.Google Scholar
  157. Supiot, Alain. 2015a. La Gouvernance par les nombres. Nantes: Librairie Arthème Fayard.Google Scholar
  158. Supiot, Alain. 2015b. Le rêve de l’harmonie par le calcul. Février: Le monde diplomatique.Google Scholar
  159. Sustainable Development Solutions Network Thematic Research Network on Data and Statistics (SDSN TReNDS). 2017. Counting on the World. Building Modern Data Systems for Sustainable Development. In. New York: UN SDSN.Google Scholar
  160. TheDemingInstitute. 2018. Seven Deadly Disease of Management. The Deminig Institute. Accessed 2.2.2018. https://deming.org/explore/seven-deadly-diseases.
  161. Thomas, Ray. 1984. A Critique of the Rayner Review of the Government Statistical Service. Public Administration.MathSciNetCrossRefGoogle Scholar
  162. Thompson Klein, Julie. 2004. Interdisciplinarity and Complexity: An Evolving Relationship. ECO, Special Double Issue 6: 2–10.Google Scholar
  163. Tooze, J. Adam. 2001. Statistics and the German State, 1900–1945: The Making of Modern Economic Knowledge. Cambridge.Google Scholar
  164. TruthCommittee. 2015. Preliminary Report of the Truth Committee on Public Debt. Hellenic Parliament: Athens.Google Scholar
  165. UNECE. 2014. Conference of European Statisticians Recommendations on Measuring Sustainable Development. New York and Geneva: United Nations Commission for Europe.Google Scholar
  166. United Nations. 1989. Handbook on Social Indicators. New York: United Nations.Google Scholar
  167. United Nations. 1992. Rio Declaration on Environment and Development. ed. General Assembly. Rio de Janeiro: UN.Google Scholar
  168. United Nations. 2014a. Fundamental Principles of Official Statistics. New York.Google Scholar
  169. United Nations. 2014b. System of Environmental-Economic Accounting 2012—Central Framework. New York: United Nations European Union, FAO, IMF, OECD, The World Bank.Google Scholar
  170. United Nations. 2014c. System of Environmental-Economic Accounting 2012—Experimental Ecosystem Accounting, ed. UNSD. New York: UN, European Commission, FAO, OECD, World Bank.Google Scholar
  171. United Nations. 2016. Sustainable Development Goals. http://www.un.org/sustainabledevelopment/sustainable-development-goals/.
  172. United Nations. 2017a. Framework for the Development of Environment Statistics (FDES 2013). New York: UN.Google Scholar
  173. United Nations. 2017b. The Sustainable Development Agenda. UN. http://www.un.org/sustainabledevelopment/development-agenda/.
  174. UNSD. 2017. The Sustainable Development Goals Report 2017. In edited by United Nations Statistical Division. New York: UNSD.Google Scholar
  175. Van den Hove, Sybille. 2007. A Rationale for Science–Policy Interfaces. Futures 39.Google Scholar
  176. Walton, M. 1986. The Deming Management Method. Perigee.Google Scholar
  177. Wietog, Jutta. 2003. German Official Statistics in the Third Reich with Respect to Population Statistics. In 54th ISI World Statistics Congress, ed. International Statistical Institute. Berlin: ISI.Google Scholar
  178. Woermann, M., O. Human, and R. Preiser. 2018. General Complexity: Aphilosophical and Critical Perspective. Emergence: Complexity and Organization 2018: 1–17.Google Scholar
  179. World Commission on Environment and Development. 1987. Our Common Future. New York: UN.Google Scholar
  180. Wuppuluri, S., and F.A. Doria. 2018. The Map and the Territory: Exploring the Foundations of Science, Thought and Reality. Springer International Publishing.Google Scholar
  181. Zak, Paul. 2013. Measurement Myopia. In Drucker Institute, ed. Drucker Institute. Drucker Institute.Google Scholar
  182. Zamora, Daniel, and Michael C. Behrent. 2014. Foucault and Neoliberalism. Cambridge.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Statistical SciencesSapienza University of RomeRomeItaly

Personalised recommendations