Official Statistics—An Introduction

  • Walter J. RadermacherEmail author


Statistics is the science of learning from data. Certainly, it is a modern technology that is part of the standards of today’s information age and is used in a wide array of fields. Statistics is a method to reduce complexity, separate signals from noise and distinguish significant from random. Statistical results are used for knowledge creation and decision-making processes. Statistical institutions are the producers of statistics. Using scientific statistical methods, data is collected and existing data is processed in order to calculate condensed information (i.e. facts), which is made available to the general public in different forms, such as statistical aggregates, graphics, maps, accounts or indicators. This work will be concerned neither with statistics in general nor with the history of theoretical statistics. Rather, the goal is to describe the status quo for a particular area of application, namely ‘official statistics’, based on an analysis of its historical genesis in order then to deploy strategic lines for the near future of this domain. Central to this work is the quality of statistical information. Statistics can only develop a positive enlightenment effect on the condition that their quality is trusted. To ensure long-term trust in statistics, it is necessary to deal with questions of knowledge, quantification and the function of facts in the social debate. The more concrete an answer that can be given to such questions, the more possible it will be to protect statistics against inappropriate expectations and to address false criticism.


  1. Brown, W. 2015. Undoing the Demos: Neoliberalism’s Stealth Revolution. Cambridge, MA: MIT Press.Google Scholar
  2. Champkin, Julian. 2014. ‘The Timeline of Statistics’, Significance, January 24, 2014.Google Scholar
  3. Davis, Kevin E., Angelina Fisher, Bendict Kingsburry, and Sally Engle Merry. 2012a. Governance by Indicators—Global Power Through Quantification and Rankings. Oxford: Oxford University Press.CrossRefGoogle Scholar
  4. Davis, Kevin E., Benedict Kingsburry, and Sally Engle Merry. 2012b. Introduction: Global Governance by Indicators. In Governance by Indicators: Global Power Through Quantification and Rankings, ed. Kevin E. Davis, Benedict Kingsburry, and Sally Engle Merry. Oxford: Oxford University Press.CrossRefGoogle Scholar
  5. Desrosières, Alain. 1998. The Politics of Large Numbers—A History of Statistical Reasoning. Cambridge, MA: Harvard University Press.zbMATHGoogle Scholar
  6. Desrosières, Alain. 2008a. Commensuration and Probabilism: Two Kinds of Controversies About Statistics (1850–1940). In The Statistical Mind in Modern Society. The Netherlands 1850–1940—Volume II: Statistics and Scientific Work, ed. I.H. Stamhuis, P.M.M. Klep, and J.G.S.J. van Maarseveen. Aksant: Amsterdam.Google Scholar
  7. Desrosières, Alain. 2008b. Gouverner par les nombres: L’argument statistique II. Paris: Les Presses de l’École des Mines.Google Scholar
  8. Desrosières, Alain. 2008c. Pour une sociologie historique de la quantification: L’argument statistique I. Paris: Les Presses de l’École des Mines.Google Scholar
  9. Desrosières, Alain. 2010. A Politics of Knowledge-Tools—The Case of Statistics. In Between Enlightenment and Disaster, ed. Linda Sangolt. Brussels: P.I.E. Peter Lang.Google Scholar
  10. Eurostat. 2016. Quality Declaration of the European Statistical System. Luxembourg: Eurostat.Google Scholar
  11. Fukuda-Parr, Sakiko. 2017. United Nations High Level Political Forum Opening Panel, 10 July 2017—Statement by Sakiko Fukuda-Parr. New York: United Nations.Google Scholar
  12. Grohmann, Heinz. 1985. Vom theoretischen Konstrukt zum statistischen Begriff - Das Adäquationsproblem. Allgemeines Statistisches Archiv 69: 1–15.MathSciNetGoogle Scholar
  13. Grohmann, Heinz. 2012. Ein Blick auf Geschichte und Bedeutung der Deutschen Statistischen Gesellschaft - Ansprache anlässlich des 100-jährigen Bestehens der Deutschen Statistischen Gesellschaft am 21. September 2011 in Leipzig. AStA Wirtsch Sozialstat Arch 2012: 57–60.CrossRefGoogle Scholar
  14. Hofstadter, Douglas R. 1979. Gödel, Escher, Bach—An Eternal Golden Braid. New York: Basic Books.zbMATHGoogle Scholar
  15. Klep, P.M.M., and I.H. Stamhuis. 2002. The Statistical Mind in a Pre-statistical Era: The Netherlands 1750–1850. Aksant.Google Scholar
  16. Plattform Industrie 4.0. 2013. Umsetzungsempfehlungen für das Zukunftsprojekt Industrie 4.0 - Abschlussbericht des Arbeitskreises Industrie 4.0. Frankfurt/Main: Plattform Industrie 4.0.Google Scholar
  17. Porter, Theodore M. 1986. The Rise of Statistical Thinking: 1820–1900. Princeton, Guildford: Princeton University Press.Google Scholar
  18. Porter, Theodore M. 1995. Trust in Numbers: The Pursuit of Objectivity in Science and Public Life. Princeton, N.J., Chichester: Princeton University Press.Google Scholar
  19. Porter, Theodore M. 2004. Karl Pearson: The Scientific Life in a Statistical Age. Princeton, NJ, Oxford: Princeton University Press.zbMATHGoogle Scholar
  20. Radermacher, Walter. 1992. Methoden und Möglichkeiten der Qualitätsbeurteilung von statistischen Informationen aus der Fernerkundung/Methods and Possibilities of Assessing the Quality of Statistical Data of Remote Sensing. Jahrbücher für Nationalökonomie und Statistik 169–179.Google Scholar
  21. Radermacher, Walter. 2012a. Aus Zahlen lernen: “Die Statistikämter sollen sich als Institutionen politischer Bildung verstehen” Interview. Weiterbildung 4, August/September 2012.Google Scholar
  22. Radermacher, Walter J. 2012b. Zahlen zählen - Gedanken zur Zukunft der amtlichen Statistik in Europa. AStA Wirtsch Sozialstat Arch 2012: 285–298.CrossRefGoogle Scholar
  23. Radermacher, Walter J. 2016. Les Statistiques Comptent - éviter le syndrome du lampadaire et avoir un citoyen européen éclairé. La Revue France Forum, no. 61.Google Scholar
  24. Radermacher, W.J. 2017. Governance der amtlichen Statistik. AStA Wirtsch Sozialstat Arch 11: 65–81. Scholar
  25. Sangolt, Linda. 2010. A Century of Quantification and “Cold Calculation.” Trends in the Pursuit of Efficiency, Growth and Pre-eminence. In Between Enlightenment and Disaster—Dimensions of the Political Use of Knowledge, ed. Linda Sangolt. Brussels: P.I.E. Peter Lang.Google Scholar
  26. Stamhuis, Ida H., Paul M.M. Klep, and Jacques G.S.J. van Maarseveen (eds.). 2008. Statistics and Scientific Work. Amsterdam: Aksant.Google Scholar
  27. Turnpenny, John R., Andrew J. Jordan, David Benson, and Tim Rayner. 2015. The Tools of Policy Formulation: An Introduction. In The Tools of Policy Formulation, ed. Andrew J. Jordan and John R. Turnpenny. Cheltenham: Edward Elgar.Google Scholar
  28. van Maarseveen, Jacques G.S.J., Paul M.M. Klep, and Ida H. Stamhuis (eds.). 2008. Official Statistics, Social Progress and Modern Enterprise. Amsterdam: Aksant.Google Scholar
  29. von der Lippe, Peter. 2012. Was hat uns die “Frankfurter Schule” der Statistik gebracht? - Darstellung einer deutschen Fehlentwicklung am Beispiel der Indextheorie von Paul Flaskämper. Duisburg: Institut für Betriebswirtschaft und Volkswirtschaft (IBES) - Universität Duisburg-Essen.Google Scholar
  30. von Schlözer, August Ludwig. 1804. Theorie der Statistik. Nebst Ideen Ueber Das Studium Der Politik Überhaupt. Vandenhoek und Ruprecht: Goettingen.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Statistical SciencesSapienza University of RomeRomeItaly

Personalised recommendations