Advertisement

Optimizing Social Welfare in Social Networks

  • Pascal Lange
  • Jörg RotheEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11834)

Abstract

We study the computational complexity of envy minimization and maximizing the social welfare of graph-envy-free allocations in social networks. Besides the already known \(\mathrm {NP}\)-completeness of finding allocations with maximal utilitarian social welfare we prove that \(\mathrm {NP}\)-completeness is in general also given for the egalitarian social welfare and the Nash product. Moreover, we focus on an extended model, based on directed social relationship graphs and undirected social trading graphs, and analyze the computational complexity of reaching a graph-envy-free allocation by trades with so-called don’t care agents and without money.

Keywords

Fair division Social welfare optimization Social network 

References

  1. 1.
    Abdulkadiroǧlu, A., Sönmez, T.: Random serial dictatorship and the core from random endowments in house allocation problems. Econometrica 66(3), 689–701 (1998)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Aziz, H., Bouveret, S., Caragiannis, I., Giagkousi, I., Lang, J.: Knowledge, fairness, and social constraints. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, pp. 4638–4645. AAAI Press (2018)Google Scholar
  3. 3.
    Bentert, M., Chen, J., Froese, V., Woeginger, G.J.: Good things come to those who swap objects on paths. arXiv:1905.04219 (2019)
  4. 4.
    Bergson, A.: A reformulation of certain aspects of welfare economics. Q. J. Econ. 52(2), 310–334 (1938)CrossRefGoogle Scholar
  5. 5.
    Bouveret, S., Cechlárová, K., Elkind, E., Igarashi, A., Peters, D.: Fair division of a graph. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 135–141. AAAI Press/IJCAI (2017)Google Scholar
  6. 6.
    Bouveret, S., Chevaleyre, Y., Maudet, N.: Fair division of indivisible goods. In: Brandt, F., Conitzer, V., Endriss, U., Procaccia, A.D. (eds.) Handbook of Computational Social Choice, pp. 284–310. Cambridge University Press, Cambridge (2016)CrossRefGoogle Scholar
  7. 7.
    Bredereck, R., Kaczmarczyk, A., Niedermeier, R.: Envy-free allocations respecting social networks. In: Proceedings of the 17th International Conference on Autonomous Agents and Multiagent Systems, pp. 283–291. IFAAMAS, July 2018Google Scholar
  8. 8.
    Chevaleyre, Y., et al.: Issues in multiagent resource allocation. Informatica 30(1), 3–31 (2006)zbMATHGoogle Scholar
  9. 9.
    Chevaleyre, Y., Endriss, U., Maudet, N.: Allocating goods on a graph to eliminate envy. In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence, pp. 700–705. AAAI Press (2007)Google Scholar
  10. 10.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)zbMATHGoogle Scholar
  11. 11.
    Gourvès, L., Lesca, J., Wilczynski, A.: Object allocation via swaps along a social network. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 213–219. AAAI Press/IJCAI (2017)Google Scholar
  12. 12.
    Heinen, T., Nguyen, N., Nguyen, T., Rothe, J.: Approximation and complexity of the optimization and existence problems for maximin share, proportional share, and minimax share allocation of indivisible goods. J. Auton. Agents Multi-Agent Syst. 32(6), 741–778 (2018)CrossRefGoogle Scholar
  13. 13.
    Heinen, T., Nguyen, N.-T., Rothe, J.: Fairness and rank-weighted utilitarianism in resource allocation. In: Walsh, T. (ed.) ADT 2015. LNCS (LNAI), vol. 9346, pp. 521–536. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23114-3_31CrossRefGoogle Scholar
  14. 14.
    Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)CrossRefGoogle Scholar
  15. 15.
    Lang, J., Rothe, J.: Fair division of indivisible goods. In: Rothe, J. (ed.) Economics and Computation. STBE, pp. 493–550. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-47904-9_8CrossRefGoogle Scholar
  16. 16.
    Lorenz, M.O.: Methods of measuring the concentration of wealth. Publ. Am. Stat. Assoc. 9(70), 209–219 (1905)Google Scholar
  17. 17.
    Papadimitriou, C.H.: Computational Complexity, 2nd edn. Addison-Wesley, Reading (1995)zbMATHGoogle Scholar
  18. 18.
    Rothe, J.: Complexity Theory and Cryptology. An Introduction to Cryptocomplexity. EATCS Texts in Theoretical Computer Science. Springer, Heidelberg (2005).  https://doi.org/10.1007/3-540-28520-2CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut für InformatikHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany

Personalised recommendations