Advertisement

Refugee Allocation in the Setting of Hedonic Games

  • Benno Kuckuck
  • Jörg RotheEmail author
  • Anke Weißenfeld
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11834)

Abstract

In recent work, Aziz et al. [4] consider refugee allocation as a matching problem, akin to the well-known hospitals-residents problem. They consider a wide range of stability conditions. Hedonic games are a well-studied class of coalition formation games, that encompass the classical matching problems. We propose a transformation of the Refugee Allocation Problem as formulated by Aziz et al. [4] into the setting of hedonic games, parametrized by a set extension rule. We show that different set extension rules lead to different stability concepts, derived from the central concept of core stability in hedonic games, mirroring some of the stability concepts proposed by Aziz et al. [4].

Keywords

Matching problem Hedonic game Refugee allocation 

References

  1. 1.
    Alkan, A.: Non-existence of stable threesome matchings. Math. Soc. Sci. 16, 207–209 (1988)CrossRefGoogle Scholar
  2. 2.
    Aziz, H.: Stable marriage and roommate problems with individual-based stability. In: Proceedings of the 12th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2013, pp. 287–294. IFAAMAS (2013)Google Scholar
  3. 3.
    Aziz, H., Biró, P., Lang, J., Lesca, J., Monnot, J.: Optimal reallocation under additive and ordinal preferences. In: Proceedings of the 15th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2016, pp. 402–410. IFAAMAS (2016)Google Scholar
  4. 4.
    Aziz, H., Chen, J., Gaspers, S., Sun, Z.: Stability and pareto optimality in refugee allocation matchings. In: Proceedings of the 17th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2018, pp. 964–972. IFAAMAS (2018)Google Scholar
  5. 5.
    Aziz, H., Savani, R.: Hedonic games. In: Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia, A. (eds.) Handbook of Computational Social Choice, Chap. 15, pp. 356–376. Cambridge University Press, Cambridge (2016)CrossRefGoogle Scholar
  6. 6.
    Barberà, S., Bossert, W., Pattanaik, P.K.: Ranking sets of objects. In: Barberà, S., Hammond, P.J., Seidl, C. (eds.) Handbook of Utility Theory, pp. 893–977. Springer, Boston (2004).  https://doi.org/10.1007/978-1-4020-7964-1_4CrossRefGoogle Scholar
  7. 7.
    Biró, P., Fleiner, T.: Fractional solutions for capacitated NTU-games, with applications to stable matchings. Discrete Optim. 22, 241–254 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Biró, P., Fleiner, T., Irving, R.W.: Matching couples with Scarf’s algorithm. Ann. Math. Artif. Intell. 77(3), 303–316 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Biró, P., McDermid, E.: Matching with sizes (or scheduling with processing set restrictions). Discrete Appl. Math. 164, 61–67 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chambers, C.P., Yenmez, M.B.: On lexicographic choice. Econ. Lett. 171, 222–224 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Delacrétaz, D., Kominers, S.D., Teytelboym, A.: Refugee resettlement (2016). Working paper. http://www.t8el.com/jmp.pdf. Version from 8 November 2016
  12. 12.
    Echenique, F., Yenmez, M.B.: A solution to matching with preferences over colleagues. Games Econ. Behav. 59(1), 46–71 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Elkind, E., Rothe, J.: Cooperative game theory. In: Rothe, J. (ed.) Economics and Computation. An Introduction to Algorithmic Game Theory, Computational Social Choice, and Fair Division, Chap. 3. Springer Texts in Business and Economics, pp. 135–193. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47904-9_3CrossRefGoogle Scholar
  14. 14.
    Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math. Mon. 69(1), 9–15 (1962)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Goto, M., Kojima, F., Kurata, R., Tamura, A., Yokoo, M.: Designing matching mechanisms under general distributional constraints. Am. Econ. J. Microecon. 9(2), 226–262 (2017)CrossRefGoogle Scholar
  16. 16.
    Hatfield, J.W., Milgrom, P.R.: Matching with contracts. Am. Econ. Rev. 95(4), 913–935 (2005)CrossRefGoogle Scholar
  17. 17.
    Igarashi, A., Elkind, E.: Hedonic games with graph-restricted communication. In: Proceedings of the 15th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2016, pp. 242–250. IFAAMAS (2016)Google Scholar
  18. 18.
    Irving, R.: An efficient algorithm for the stable roommates problem. J. Algorithms 6(4), 577–595 (1985)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kamada, Y., Kojima, F.: Efficient matching under distributional constraints: theory and applications. Am. Econ. Rev. 105(1), 67–99 (2015)CrossRefGoogle Scholar
  20. 20.
    McDermid, E.J., Manlove, D.F.: Keeping partners together: algorithmic results for the hospitals/residents problem with couples. J. Comb. Optim. 19(3), 279–303 (2010)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Nguyen, T., Vohra, R.: Near-feasible stable matchings with couples. Am. Econ. Rev. 108(11), 3154–3169 (2018)CrossRefGoogle Scholar
  22. 22.
    Roth, A.E.: Stability and polarization of interests in job matching. Econometrica 52(1), 47–57 (1984). http://www.jstor.org/stable/1911460CrossRefGoogle Scholar
  23. 23.
    Roth, A.E.: Conflict and coincidence of interest in job matching: some new results and open questions. Math. Oper. Res. 10(3), 379–389 (1985)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Roth, A.E.: Deferred acceptance algorithms: history, theory, practice, and open questions. Int. J. Game Theory 36(3–4), 537–569 (2008)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Roth, A.E., Sotomayor, M.: Two-sided matching. Handb. Game Theory Econ. Appl. 1, 485–541 (1992)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Woeginger, G.J.: Core stability in hedonic coalition formation. In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM 2013. LNCS, vol. 7741, pp. 33–50. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-35843-2_4CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Mathematisches InstitutHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany
  2. 2.Institut für InformatikHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany
  3. 3.Ministry for Children, Family, Refugees and Integration of the State of North Rhine-WestphaliaDüsseldorfGermany

Personalised recommendations