Advertisement

Analysis of the Elastic Model

  • Andrea Aspri
Chapter
Part of the Lecture Notes in Geosystems Mathematics and Computing book series (LNGMC)

Abstract

In this chapter we study the linear elastic model presented in the introduction. We recall that it is applied in volcanology to describe the surface deformation effects caused by a magma chamber embedded into Earth’s interior and exerting on it a uniform hydrostatic pressure. From a mathematical point of view, the modeling assumptions translates into a Neumann boundary value problem for the classic Lamé system in a half-space with an embedded pressurized cavity. To be more precise, the boundary conditions are traction-free for the air/crust boundary and uniformly hydrostatic for the chamber boundary.

References

  1. 1.
    Abramovich, Y.A., Aliprantis, C.D.: An Invitation to Operator Theory. Graduate Studies in Mathematics, vol. 50. American Mathematical Society, Providence (2002)Google Scholar
  2. 2.
    Agmon, S.: Unicité et convexité dans les problèmes differéntiels. Sém. de Mathématiques Sup., Univ. de Montréal (1965)Google Scholar
  3. 4.
    Alessandrini, G., Morassi, A.: Strong unique continuation for Lamé system of elasticity. Commun. Partial Differ. Equ. 26, 1787–1810 (2001)CrossRefGoogle Scholar
  4. 5.
    Alessandrini, G., Rondi, L.: Optimal stability for the inverse problem of multiple cavities. J. Differ. Equ. 176, 356–386 (2001)MathSciNetCrossRefGoogle Scholar
  5. 7.
    Alessandrini, G., Beretta, E., Rosset, E., Vessella, S.: Optimal stability for inverse elliptic boundary value problems with unknown boundaries. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 29, 755–806 (2000)MathSciNetzbMATHGoogle Scholar
  6. 8.
    Alessandrini, G., Rosset, E., Seo, J.K.: Optimal size estimates for the inverse conductivity problem with one measurement. Proc. Am. Math. Soc. 128, 53–64 (2000)MathSciNetCrossRefGoogle Scholar
  7. 10.
    Alessandrini, G., Morassi, A., Rosset, E.: Detecting an inclusion in an elastic body by boundary measurements. SIAM J. Math. Anal. 33, 1247–1268 (2002)MathSciNetCrossRefGoogle Scholar
  8. 11.
    Alessandrini, G., Morassi, A., Rosset, E.: Size estimates. In: Alessandrini, G., Uhlmann, G. (eds.) Inverse Problems: Theory and Applications. Contemporary Mathematics, vol. 333, pp. 1–33. American Mathematical Society, Providence (2003)CrossRefGoogle Scholar
  9. 12.
    Alessandrini, G., Morassi, A., Rosset, E.: The linear constraints in Poincaré and Korn type inequalities. Forum Math 20, 557–569 (2008)MathSciNetCrossRefGoogle Scholar
  10. 13.
    Alessandrini, G., Morassi, A., Rosset, E., Vessella, S.: On doubling inequalities for elliptic systems. J. Math. Anal. Appl. 357, 349–355 (2009)MathSciNetCrossRefGoogle Scholar
  11. 21.
    Ammari, H., Kang, H.: Reconstruction of Small Inhomogeneities from Boundary Measurements. Lecture Notes in Mathematics. Springer, Berlin (2004)CrossRefGoogle Scholar
  12. 27.
    Ammari, H., Bretin, E., Garnier, J., Kang, H., Lee, H., Wahab, A.: Mathematical Methods in Elasticity Imaging. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2015)CrossRefGoogle Scholar
  13. 30.
    Amrouche, C., Girault, V., Giroire, J.: Weighted Sobolev spaces for Laplace’s equation in \(\mathbb {R}^n\). J. Math. Pures Appl. 73, 579–606 (1994)Google Scholar
  14. 36.
    Aspri, A., Beretta, E., Mascia, C.: Analysis of a Mogi-type model describing surface deformations induced by magma chamber embedded in an elastic half-space. J. École Polytech. Math. 4, 223–255 (2017)MathSciNetCrossRefGoogle Scholar
  15. 37.
    Aspri, A., Beretta, E., Rosset, E.: On an elastic model arising from volcanology: an analysis of the direct and inverse problem. J. Differ. Equ. 265, 6400–6423 (2018)MathSciNetCrossRefGoogle Scholar
  16. 53.
    Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)zbMATHGoogle Scholar
  17. 62.
    Ciarlet, P.G.: Mathematical Elasticity. Vol. I. Three-Dimensional Elasticity. Studies in Mathematics and Its Applications, vol. 20. North-Holland Publishing Co., Amsterdam (1988)Google Scholar
  18. 66.
    Dahlberg, B.E., Kenig, C.E., Verchota, G.C.: Boundary value problem for the system of elastostatics in Lipschitz domains. Duke Math. J. 57, 795–818 (1988)MathSciNetCrossRefGoogle Scholar
  19. 79.
    Fabes, E.B., Kenig, C.E., Verchota, G.: The Dirichlet problem for the Stokes system on Lipschitz domains. Duke Math. J. 57, 795–818 (1988)MathSciNetCrossRefGoogle Scholar
  20. 83.
    Fichera, G.: Sull’esistenza e sul calcolo delle soluzioni dei problemi al contorno, relativi all’equilibrio di un corpo elastico. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3e serie 4, 35–99 (1950)Google Scholar
  21. 85.
    Friedman, A., Vogelius, M.: Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence. Arch. Ration. Mech. Anal. 105, 299–326 (1984)MathSciNetCrossRefGoogle Scholar
  22. 86.
    Garofalo, N., Lin, F.: Monotonicity properties of variational integrals, A p weights and unique continuation. Indiana Univ. Math. J. 35, 245–268 (1986)MathSciNetCrossRefGoogle Scholar
  23. 87.
    Gurtin, M.E.: The linear theory of elasticity. In: Encyclopedia of Physics, vol. VI a/2. Springer, Berlin (1972)Google Scholar
  24. 90.
    Hadamard, J.: Lectures on Cauchy’s Problem in Linear Partial Differential Equations. Dover, New York (1953)CrossRefGoogle Scholar
  25. 99.
    Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1995)CrossRefGoogle Scholar
  26. 102.
    Kondrat’ev, V.A., Oleinik, O.A.: Boundary-value problems for the system of elasticity theory in unbounded domains. Korn’s inequalities. Russ. Math. Surv. 43, 65–119 (1988)CrossRefGoogle Scholar
  27. 103.
    Kress, R.: Linear Integral Equations. Springer, Berlin (1989)CrossRefGoogle Scholar
  28. 104.
    Kupradze, V.D.: Potential Methods in the Theory of Elasticity. Israel Program for Scientific Translations, Jerusalem (1965)zbMATHGoogle Scholar
  29. 105.
    Landis, E.M.: A three-sphere theorem. Dokl. Akad. Nauk SSSR 148, 277–279 (1963); Engl. trans. Soviet Math. Dokl. 4, 76–78 (1963)Google Scholar
  30. 106.
    Lewiński, T., Sokołowski, J.: Energy change due to the appearance of cavities in elastic solids. Int. J. Solids Struct. 40, 1765–1803 (2003)CrossRefGoogle Scholar
  31. 109.
    Masmoudi, N.: About the Hardy inequality. In: Schleicher, D., Lackmann, M. (eds.) Invitation to Mathematics. From Competitions to Research, pp. 165–180. Springer, Berlin (2011)CrossRefGoogle Scholar
  32. 112.
    Mindlin, R.D.: Force at a point in the interior of a semiinfinite solid. J. Appl. Phys. 7, 195–202 (1936)zbMATHGoogle Scholar
  33. 113.
    Mindlin, R.D.: Force at a point in the interior of a semi-infinite solid. In: Proceedings of the First Midwestern Conference on Solid Mechanics, April, University of Illinois, Urbana (1954)Google Scholar
  34. 115.
    Morassi, A., Rosset, E.: Stable determination of cavities in elastic bodies. Inverse Prob. 20, 453–480 (2004)MathSciNetCrossRefGoogle Scholar
  35. 116.
    Morassi, A., Rosset, E.: Uniqueness and stability in determining a rigid inclusion in an elastic body. Mem. Am. Math. Soc. 200(938), 453–480 (2009)MathSciNetzbMATHGoogle Scholar
  36. 130.
    Valent, T.: Boundary Value Problems of Finite Elasticity, Local Theorems on Existence, Uniqueness and Analytic Dependence on Data. Springer, New York (1988)CrossRefGoogle Scholar
  37. 131.
    Verchota, G.C.: Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J. Funct. Anal. 59, 572–611 (1984)MathSciNetCrossRefGoogle Scholar
  38. 138.
    Yosida, K.: Functional Analysis. Springer, Berlin (1980)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andrea Aspri
    • 1
  1. 1.Austrian Academy of SciencesJohann Radon Institute for ComputationalLinzAustria

Personalised recommendations