Advertisement

A Scalar Model in the Half-Space

  • Andrea Aspri
Chapter
Part of the Lecture Notes in Geosystems Mathematics and Computing book series (LNGMC)

Abstract

The aim of this chapter is to provide a detailed mathematical study of a simplified scalar version of the elastic problem presented in Chap. 1. Since this problem is easier than the elastic case it will be studied in the generic framework of a d-dimensional space, with d ≥ 3.

References

  1. 18.
    Ammari, H.: An Introduction to Mathematics of Emerging Biomedical Imaging. Mathématiques et Applications, vol. 62. Springer, Berlin (2008)Google Scholar
  2. 21.
    Ammari, H., Kang, H.: Reconstruction of Small Inhomogeneities from Boundary Measurements. Lecture Notes in Mathematics. Springer, Berlin (2004)CrossRefGoogle Scholar
  3. 22.
    Ammari, H., Kang, H.: Polarization and Moment Tensors with Applications to Inverse Problems and Effective Medium Theory. Applied Mathematical Sciences, vol. 162. Springer, Berlin (2007)Google Scholar
  4. 25.
    Ammari, H., Moskow, S., Vogelius, M.: Boundary integral formulas for the reconstruction of electromagnetic imperfections of small diameter. ESAIM Control Optim. Calc. Var. 9, 49–66 (2003)MathSciNetCrossRefGoogle Scholar
  5. 26.
    Ammari, H., Griesmaier, R., Hanke, M.: Identification of small inhomogeneities: asymptotic factorization. Math. Comput. 76, 1425–1448 (2007)MathSciNetCrossRefGoogle Scholar
  6. 27.
    Ammari, H., Bretin, E., Garnier, J., Kang, H., Lee, H., Wahab, A.: Mathematical Methods in Elasticity Imaging. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2015)CrossRefGoogle Scholar
  7. 28.
    Amrouche, C., Bonzom, F.: Exterior problems in the half-space for the Laplace operator in weighted Sobolev spaces. J. Differ. Equ. 246, 1894–1920 (2009)MathSciNetCrossRefGoogle Scholar
  8. 29.
    Amrouche, C., Nečasová, S.: Laplace equation in the half-space with a nonhomogeneous Dirichlet boundary condition. Math. Boh. 126, 265–274 (2001)MathSciNetzbMATHGoogle Scholar
  9. 30.
    Amrouche, C., Girault, V., Giroire, J.: Weighted Sobolev spaces for Laplace’s equation in \(\mathbb {R}^n\). J. Math. Pures Appl. 73, 579–606 (1994)Google Scholar
  10. 32.
    Amrouche, C., Dambrine, M., Raudin, Y.: An L p theory of linear elasticity in the half-space. J. Differ. Equ. 253, 906–932 (2012)MathSciNetCrossRefGoogle Scholar
  11. 33.
    Amrouche, C., Meslameni, M., Nečasová, S.: Linearized Navier-Stokes equations in \(\mathbb {R}^3\): an approach in weighted Sobolev spaces. Discrete Contin. Dynam. Syst. 7, 901–916 (2014)Google Scholar
  12. 35.
    Aspri, A., Beretta, E., Mascia, C.: Asymptotic expansion for harmonic functions in the half-space with a pressurized cavity. Math. Meth. Appl. Sci. 39(10), 2415–2430 (2016)MathSciNetCrossRefGoogle Scholar
  13. 47.
    Beretta, E., Mukherjee, A., Vogelius, M.S.: Asymptotic formulas for steady state voltage potentials in the presence of conductivity imperfections of small area. Z. Angew. Math. Phys. 52, 543–572 (2001)MathSciNetCrossRefGoogle Scholar
  14. 48.
    Beretta, E., Francini, E., Vogelius, M.S.: Asymptotic formulas for steady state voltage potentials in the presence of thin inhomogeneities. A rigorous error analysis. J. Math. Pures Appl. 82, 1277–1301 (2003)CrossRefGoogle Scholar
  15. 56.
    Calderón, A.P.: Cauchy integrals on Lipschitz curves and related operators. Proc. Natl. Acad. Sci. U.S.A. 74, 1324–1327 (1977)MathSciNetCrossRefGoogle Scholar
  16. 59.
    Capdeboscq, Y., Vogelius, M.S.: A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction. Math. Model. Numer. Anal. 37, 159–173 (2003)MathSciNetCrossRefGoogle Scholar
  17. 63.
    Coifman, R.R., McIntosh, A., Meyer, Y.: L’intégrale de Cauchy définit un opérateur bourné sur L 2 pour les courbes lipschitziennes. Ann. Math. 116, 361–387 (1982)MathSciNetCrossRefGoogle Scholar
  18. 75.
    Escauriaza, L., Fabes, E.B., Verchota, G.: On a regularity theorem for weak solutions to transmission problems with internal Lipschitz boundaries. Proc. Am. Math. Soc. 115, 1069–1076 (1992)MathSciNetCrossRefGoogle Scholar
  19. 76.
    Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)zbMATHGoogle Scholar
  20. 77.
    Fabes, E.B., Jodeit, M., Lewis, J.E.: Double layer potentials for domains with corners and edges. Indiana Univ. Math. J. 26, 95–114 (1977)MathSciNetCrossRefGoogle Scholar
  21. 78.
    Fabes, E.B., Jodeit, M., Riviére, N.M.: Potential techniques for boundary value problems on C 1 domains. Acta Math. 141, 165–186 (1978)MathSciNetCrossRefGoogle Scholar
  22. 84.
    Folland, G.B.: Introduction to Partial Differential Equations. Princeton University Press, Princeton (1995)zbMATHGoogle Scholar
  23. 85.
    Friedman, A., Vogelius, M.: Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence. Arch. Ration. Mech. Anal. 105, 299–326 (1984)MathSciNetCrossRefGoogle Scholar
  24. 91.
    Hanouzet, B.: Espaces de Sobolev avec poids. Application au problème de Dirichlet dans un demi-espace. Rendiconti del Seminario Matematico della Università di Padova 46, 227–272 (1971)zbMATHGoogle Scholar
  25. 93.
    Hein Hoernig, R.O.: Green’s functions and integral equations for the Laplace and Helmholtz operators in impedance half-spaces. Mathematics, Ecole Polytechnique X (2010)Google Scholar
  26. 101.
    Kesavan, S.: Topics in Functional Analysis and Applications. New Age International (P) Limited, Publishers, New Delhi (1989)Google Scholar
  27. 102.
    Kondrat’ev, V.A., Oleinik, O.A.: Boundary-value problems for the system of elasticity theory in unbounded domains. Korn’s inequalities. Russ. Math. Surv. 43, 65–119 (1988)CrossRefGoogle Scholar
  28. 103.
    Kress, R.: Linear Integral Equations. Springer, Berlin (1989)CrossRefGoogle Scholar
  29. 110.
    McLean, W.C.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  30. 124.
    Salsa, S.: Equazioni a derivate parziali metodi, modelli e applicazioni. Springer, Berlin (2010)CrossRefGoogle Scholar
  31. 131.
    Verchota, G.C.: Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J. Funct. Anal. 59, 572–611 (1984)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andrea Aspri
    • 1
  1. 1.Austrian Academy of SciencesJohann Radon Institute for ComputationalLinzAustria

Personalised recommendations