From the Physical to the Mathematical Model

  • Andrea Aspri
Part of the Lecture Notes in Geosystems Mathematics and Computing book series (LNGMC)


Nowadays, collection of precise measurements of ground deformations is required to characterize the type of physical processes taking place inside the earth’s crust and constrain the size and location of the source of unrest


  1. 3.
    Alessandrini, G.: Examples of instability in inverse boundary-value problems. Inverse Prob. 13, 887–897 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 5.
    Alessandrini, G., Rondi, L.: Optimal stability for the inverse problem of multiple cavities. J. Differ. Equ. 176, 356–386 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 6.
    Alessandrini, G., Sincich, E.: Cracks with impedance; stable determination from boundary data. Indiana Univ. Math. J. 62, 947–989 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 7.
    Alessandrini, G., Beretta, E., Rosset, E., Vessella, S.: Optimal stability for inverse elliptic boundary value problems with unknown boundaries. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 29, 755–806 (2000)MathSciNetzbMATHGoogle Scholar
  5. 14.
    Alessandrini, G., Rondi, L., Rosset, E., Vessella, S.: The stability for the Cauchy problem for elliptic equations. Inverse Prob. 25, 123004 (47 pp.) (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 15.
    Alessandrini, G., Di Cristo, M., Morassi, A., Rosset, E.: Stable determination of an inclusion in an elastic body by boundary measurements. SIAM J. Math. Anal. 46, 2692–2729 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 16.
    Alessandrini, G., Morassi, A., Rosset, E., Vessella, S.: Global stability for an inverse problem in soil-structure interaction. Proc. R. Soc. A 471, 20150117 (12 pp.) (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 17.
    Alves, C., Ammari, H.: Boundary integral formulae for the reconstruction of imperfections of small diameter in an elastic medium. SIAM J. Appl. Math. 62, 94–106 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 18.
    Ammari, H.: An Introduction to Mathematics of Emerging Biomedical Imaging. Mathématiques et Applications, vol. 62. Springer, Berlin (2008)Google Scholar
  10. 19.
    Ammari, H., Kang, H.: High-order terms in the asymptotic expansions of the steady-state voltage potentials in the presence of conductivity inhomogeneities of small diameter. SIAM J. Math. Anal. 34, 1152–1166 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 20.
    Ammari, H., Kang, H.: Boundary layer techniques for solving the Helmholtz equation in the presence of small inhomogeneities. J. Math. Anal. Appl. 296, 190–208 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 21.
    Ammari, H., Kang, H.: Reconstruction of Small Inhomogeneities from Boundary Measurements. Lecture Notes in Mathematics. Springer, Berlin (2004)zbMATHCrossRefGoogle Scholar
  13. 22.
    Ammari, H., Kang, H.: Polarization and Moment Tensors with Applications to Inverse Problems and Effective Medium Theory. Applied Mathematical Sciences, vol. 162. Springer, Berlin (2007)Google Scholar
  14. 23.
    Ammari, H., Vogelius, M.S., Volkov, D.: Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II. The full Maxwell equations. J. Math. Pures Appl. 80, 769–814 (2001)zbMATHCrossRefGoogle Scholar
  15. 24.
    Ammari, H., Kang, H., Nakamura, G., Tanuma, K.: Complete asymptotic expansions of solutions of the system of elastostatics in the presence of an inclusion of small diameter and detection of an inclusion. J. Elast. 67, 97–129 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 25.
    Ammari, H., Moskow, S., Vogelius, M.: Boundary integral formulas for the reconstruction of electromagnetic imperfections of small diameter. ESAIM Control Optim. Calc. Var. 9, 49–66 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 27.
    Ammari, H., Bretin, E., Garnier, J., Kang, H., Lee, H., Wahab, A.: Mathematical Methods in Elasticity Imaging. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2015)zbMATHCrossRefGoogle Scholar
  18. 28.
    Amrouche, C., Bonzom, F.: Exterior problems in the half-space for the Laplace operator in weighted Sobolev spaces. J. Differ. Equ. 246, 1894–1920 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 33.
    Amrouche, C., Meslameni, M., Nečasová, S.: Linearized Navier-Stokes equations in \(\mathbb {R}^3\): an approach in weighted Sobolev spaces. Discrete Contin. Dynam. Syst. 7, 901–916 (2014)Google Scholar
  20. 34.
    Anderson, E.M.: Dynamics of the formation of cone-sheets, ringdykes, and cauldron-subsidences. Proc. R. Soc. Edinb. 56, 128–157 (1936)CrossRefGoogle Scholar
  21. 35.
    Aspri, A., Beretta, E., Mascia, C.: Asymptotic expansion for harmonic functions in the half-space with a pressurized cavity. Math. Meth. Appl. Sci. 39(10), 2415–2430 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 36.
    Aspri, A., Beretta, E., Mascia, C.: Analysis of a Mogi-type model describing surface deformations induced by magma chamber embedded in an elastic half-space. J. École Polytech. Math. 4, 223–255 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 37.
    Aspri, A., Beretta, E., Rosset, E.: On an elastic model arising from volcanology: an analysis of the direct and inverse problem. J. Differ. Equ. 265, 6400–6423 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 38.
    Battaglia, M., Hill, D.P.: Analytical modeling of gravity changes and crustal deformation at volcanoes: the Long Valley caldera, California, case study. Tectonophysics 471, 45–57 (2009)CrossRefGoogle Scholar
  25. 40.
    Battaglia, M., Segall, P., Roberts, C.: The mechanics of unrest at Long Valley caldera, California. 2. Constraining the nature of the source using geodetic and micro-gravity data. J. Volcanol. Geotherm. Res. 127, 219–245 (2003)CrossRefGoogle Scholar
  26. 41.
    Battaglia, M., Gottsmann, J., Carbone, D., Fernández, J.: 4D volcano gravimetry. Geophysics 73, WA3–WA18 (2008)CrossRefGoogle Scholar
  27. 42.
    Battaglia, M., Cervelli, P.F., Murray, J.R.: dMODELS: a MATLAB software package for modeling crustal deformation near active faults and volcanic centers. J. Volcanol. Geotherm. Res. 254, 1–4 (2013)CrossRefGoogle Scholar
  28. 43.
    Battaglia, M., Cervelli, P.F., Murray, J.R.: Modeling crustal deformation near active faults and volcanic centers - a catalog of deformation models. U.S. Geological Survey Techniques and Methods, p. 13-B1, 75 pp. (2013)Google Scholar
  29. 44.
    Battaglia, M., Lisowski, M., Dzurisin, D., Poland, M.P., Schilling, S., Diefenbach, A., Wynn, J.: Mass Addition at Mount St. Helens, Washington, Inferred From Repeated Gravity Surveys. J. Geophys. Res.: Solid Earth 123 (2018). Google Scholar
  30. 45.
    Beretta, E., Francini, E.: An asymptotic formula for the displacement field in the presence of thin elastic inhomogeneities. SIAM J. Math. Anal. 38, 1249–1261 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 46.
    Beretta, E., Vessella, S.: Stable determination of boundaries from Cauchy data. SIAM J. Math. Anal. 30, 220–232 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 47.
    Beretta, E., Mukherjee, A., Vogelius, M.S.: Asymptotic formulas for steady state voltage potentials in the presence of conductivity imperfections of small area. Z. Angew. Math. Phys. 52, 543–572 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 48.
    Beretta, E., Francini, E., Vogelius, M.S.: Asymptotic formulas for steady state voltage potentials in the presence of thin inhomogeneities. A rigorous error analysis. J. Math. Pures Appl. 82, 1277–1301 (2003)zbMATHCrossRefGoogle Scholar
  34. 49.
    Beretta, E., Francini, E., Vessella, S.: Determination of a linear crack in an elastic body from boundary measurements-Lipschitz stability. SIAM J. Math. Anal. 40, 984–1002 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 50.
    Berrino, G., Rymer, H., Brown, G.C., Corrado, G.: Gravity-height correlations for unrest at calderas. J. Volcanol. Geotherm. Res. 53, 11–26 (1992)CrossRefGoogle Scholar
  36. 51.
    Bonaccorso, A., Davis, P.M.: Models of ground deformation from vertical volcanic conduits with application to eruptions of Mount St. Helens and Mount Etna. J. Geophys. Res. 104(B5), 10531–10542 (1999)CrossRefGoogle Scholar
  37. 52.
    Bonafede, M.: Hot fluid migration: an efficient source of ground deformation: application to the 1982–1985 crisis at Campi Flegrei-Italy. J. Volcanol. Geotherm. Res. 48, 187–198 (1991)CrossRefGoogle Scholar
  38. 54.
    Brühl, M., Hanke, M., Vogelius, M.S.: A direct impedance tomography algorithm for locating small inhomogeneities. Numer. Math. 93, 635–654 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 55.
    Calderón, A.P.: Uniqueness in the Cauchy problem for partial differential equations. Am. J. Math. 80, 16–36 (1958)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 57.
    Calderón, A.P., Zygmund, A.: On the existence of certain singular integrals. Acta Math. 88, 85–139 (1952)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 58.
    Calderón, A.P., Zygmund, A.: On singular integrals. Am. J. Math. 78, 289–309 (1956)zbMATHCrossRefGoogle Scholar
  42. 59.
    Capdeboscq, Y., Vogelius, M.S.: A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction. Math. Model. Numer. Anal. 37, 159–173 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 60.
    Capdeboscq, Y., Vogelius, M.S.: Optimal asymptotic estimates for the volume of internal inhomogeneities in terms of multiple boundary measurements. Math. Model. Numer. Anal. 3, 227–240 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 61.
    Cedio-Fengya, D.J., Moskow, S., Vogelius, M.S.: Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction. Inverse Prob. 14, 553–595 (1998)zbMATHGoogle Scholar
  45. 64.
    Currenti, G., Del Negro, C., Ganci, G.: Finite element modeling of ground deformation and gravity field at Mt. Etna. Ann. Geophys. 51(1), 105–119 (2008)Google Scholar
  46. 65.
    Currenti, G., Bonaccorso, A., Del Negro, C., Scandura, D., Boschi, E.: Elasto-plastic modeling of volcano ground deformation. Earth Planet. Sci. Lett. 296, 311–318 (2010)CrossRefGoogle Scholar
  47. 67.
    Davis, P.M.: Surface deformation associated with a dipping hydrofracture. J. Geophys. Res. 88, 5829–5834 (1983)Google Scholar
  48. 68.
    Davis, P.M.: Surface deformation due to inflation of an arbitrarily oriented triaxial ellipsoidal cavity in an elastic half-space, with reference to Kilauea Volcano, Hawaii. J. Geophys. Res. 91(B7), 7429–7438 (1986)CrossRefGoogle Scholar
  49. 69.
    De Natale, G., Pingue, F.: Ground deformation modeling in volcanic areas. In: Scarpa, R., Tilling, R.I. (eds.) Monitoring and Mitigation of Volcano Hazards, pp. 365–388. Springer, Berlin (1996)CrossRefGoogle Scholar
  50. 71.
    Di Traglia, F., Battaglia, M., Nolesini, T., Lagomarsino, D., Casagli, N.: Shifts in the eruptive styles at Stromboli in 2010–2014 revealed by ground-based InSAR data. Sci. Rep. 5, 1–11 (2015)CrossRefGoogle Scholar
  51. 72.
    Dzurisin, D.: A comprehensive approach to monitoring volcano deformation as a window on the eruption cycle. Rev. Geophys. 41, 29 pp. (2003)Google Scholar
  52. 73.
    Dzurisin, D.: Volcano Deformation. Geodetic Monitoring Techniques. Springer Praxis Books. Springer, Berlin (2006)CrossRefGoogle Scholar
  53. 74.
    Dzurisin, D., Savage, J., Fournier, B.: Recent crustal subsidence at Yellowstone Caldera, Wyoming. Bull. Volcanol. 52, 247–270 (1990)CrossRefGoogle Scholar
  54. 80.
    Fernández, J., Charco, M., Tiampo, K.F., Jentzsch, G., Rundle, J.B.: Joint interpretation of displacement and gravity data in volcanic area. A test example: Long Valley Caldera, California. Geophys. Res. Lett. 28, 1063–1066 (2001)CrossRefGoogle Scholar
  55. 81.
    Fernández, J., Tiampo, K.F., Jentzsch, G., Charco, M., Rundle, J.B.: Inflation or Deflation? New results for Mayon Volcano applying elastic-gravitational modeling. Geophys. Res. Lett. 28, 2349–2352 (2001)Google Scholar
  56. 82.
    Fialko, Y., Khazan, Y., Simons, M.: Deformation due to a pressurized horizontal circular crack in an elastic half-space, with applications to volcano geodesy. Geophys. J. Int. 146(1), 181–190 (2001)CrossRefGoogle Scholar
  57. 85.
    Friedman, A., Vogelius, M.: Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence. Arch. Ration. Mech. Anal. 105, 299–326 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 88.
    Guzina, B.B., Bonnet, M.: Topological derivative for the inverse scattering of elastic waves. Q. J. Mech. Appl. Math. 57, 161–179 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 89.
    Hadamard, J.: Sur les problemes aux derivées partielles et leur signification physique. Bull. Univ. Princeton 13, 49–52 (1902)Google Scholar
  60. 90.
    Hadamard, J.: Lectures on Cauchy’s Problem in Linear Partial Differential Equations. Dover, New York (1953)zbMATHCrossRefGoogle Scholar
  61. 92.
    Hautmann, S., Gottsmann, J., Sparks, R.S.J., Mattioli, G.S., Sacks, I.S., Strutt, M.H.: Effect of mechanical heterogeneity in arc crust on volcano deformation with application to Soufrière Hills volcano, Monteserrat, West Indies. J. Geophys. Res. Solid Earth 115, B09203 (2010)CrossRefGoogle Scholar
  62. 94.
    Hickey, J., Gottsmann, L., Mothes, P., Odbert, H., Prutkin, I., Vajda, P.: The ups and downs of volcanic unrest: insights from integrated geodesy and numerical modelling. In: Advances in Volcanology. Springer, Berlin (2017)Google Scholar
  63. 96.
    John, F.: Numerical solution of the equation of heat conduction for preceding times. Ann. Mat. Pura Appl. 40, 129–142 (1955)MathSciNetzbMATHCrossRefGoogle Scholar
  64. 97.
    John, F.: Continuous dependence on data for solutions of partial differential equations with a prescribed bound. Commun. Pure Appl. Math. 13, 551–585 (1960)zbMATHCrossRefGoogle Scholar
  65. 107.
    Lisowski, M.: Analytical volcano deformation source models. In: Dzurisin, D. (ed.) Volcano Deformation. Geodetic Monitoring Techniques. Springer Praxis Books, pp. 279–304. Springer, Berlin (2006)Google Scholar
  66. 108.
    Manconi, A., Walter, T.R., Amelung, F.: Effects of mechanical layering on volcano deformation Geophys. J. Int. 170(2), 952–958 (2007)Google Scholar
  67. 111.
    McTigue, D.F.: Elastic stress and deformation near a finite spherical magma body: resolution of the point source paradox. J. Geophys. Res. 92, 12931–12940 (1987)CrossRefGoogle Scholar
  68. 114.
    Mogi, K.: Relations between the eruptions of various volcanoes and the deformation of the ground surfaces around them. Bull. Earthq. Res. Inst. Univ. Tokyo 36, 99–134 (1958)Google Scholar
  69. 115.
    Morassi, A., Rosset, E.: Stable determination of cavities in elastic bodies. Inverse Prob. 20, 453–480 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  70. 116.
    Morassi, A., Rosset, E.: Uniqueness and stability in determining a rigid inclusion in an elastic body. Mem. Am. Math. Soc. 200(938), 453–480 (2009)MathSciNetzbMATHGoogle Scholar
  71. 117.
    Morassi, A., Rosset, E.: Stable determination of an inclusion in an inhomogeneous elastic body by boundary measurements. Rend. Istit. Mat. Univ. Trieste 48, 101–120 (2016)MathSciNetzbMATHGoogle Scholar
  72. 118.
    Morassi, A., Rosset, E., Vessella, S.: Detecting general inclusions in elastic plates Inverse Prob. 25, 045009 (14 pp.) (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  73. 120.
    Morassi, A., Rosset, E., Vessella, S.: Recent results about the detection of unknown boundaries and inclusions in elastic plates. J. Inverse Ill-Posed Probl. 21, 311–352 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  74. 121.
    Okada, Y.: Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 75, 1135–1154 (1985)Google Scholar
  75. 122.
    Rymer, H.: Microgravity change as a precursor to volcanic activity. J. Volcanol. Geotherm. Res. 61, 311–328 (1994)CrossRefGoogle Scholar
  76. 125.
    Segall, P.: Earthquake and Volcano Deformation. Princeton University Press, Princeton (2010)zbMATHCrossRefGoogle Scholar
  77. 126.
    Segall, P.: Volcano deformation and eruption forecasting. Geol. Soc. Spec. Publ. 380(1), 85–106 (2013)CrossRefGoogle Scholar
  78. 127.
    Segall, P.: Magma chambers: what we can, and cannot, learn from volcano geodesy. Philos. Trans. R. Soc. A 377, 20180158 (2019)CrossRefGoogle Scholar
  79. 128.
    Tizzani, P., Battaglia, M., Castaldo, R., Pepe, A., Zeni, G., Lanari, R.: Magma and fluid migration at Yellowstone Caldera in the last three decades inferred from InSAR, leveling, and gravity measurements. J. Geophys. Res.: Solid Earth 120, 2627–2647 (2015)Google Scholar
  80. 129.
    Trasatti, E., Giunchi, C., Bonafede, M.: Effects of topography and rheological layering on ground deformation in volcanic regions. J. Volcanol. Geotherm. Res. 122, 89–110 (2003)CrossRefGoogle Scholar
  81. 132.
    Vogelius, M.S., Volkov, D.: Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities. M2AN Math. Model. Numer. Anal. 34, 723–748 (2000)Google Scholar
  82. 133.
    Volpert, V.: Elliptic Partial Differential Equations. Volume 1: Fredholm Theory of Elliptic Problems in Unbounded Domains. Springer, Basel (2011)CrossRefGoogle Scholar
  83. 134.
    Wicks, C., Thatcher, W., Dzurisin, D.: Migration of fluids beneath Yellowstone Caldera inferred from satellite radar interferometry. Science 282, 458–462 (1998)CrossRefGoogle Scholar
  84. 135.
    Williams, C.A., Wadge, G.: The effects of topography on magma chamber deformation models: application to Mt. Etna and radar interferometry. Geophys. Res. Lett. 25(10), 1549–1552 (1998)CrossRefGoogle Scholar
  85. 136.
    Yamakawa, N.: On the strain produced in a semi-infinite elastic solid by an interior source of stress. Zisin (J. Seismol. Soc. Jpn.) 8, 84–98 (1955)CrossRefGoogle Scholar
  86. 137.
    Yang, X.-M., Davis, P.M., Dieterich, J.H.: Deformation from inflation of a dipping finite prolate spheroid in an elastic half-space as a model for volcanic stressing. J. Geophys. Res. Solid Earth 93(B5), 4249–4257 (1988)CrossRefGoogle Scholar
  87. 29.
    Amrouche, C., Nečasová, S.: Laplace equation in the half-space with a nonhomogeneous Dirichlet boundary condition. Math. Boh. 126, 265–274 (2001)MathSciNetzbMATHGoogle Scholar
  88. 30.
    Amrouche, C., Girault, V., Giroire, J.: Weighted Sobolev spaces for Laplace’s equation in \(\mathbb {R}^n\). J. Math. Pures Appl. 73, 579–606 (1994)Google Scholar
  89. 31.
    Amrouche, C., Nečasová, S., Raudin, Y.: Very weak, generalized and strong solutions to the Stokes system in the half-space. J. Differ. Equ. 244, 887–915 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  90. 32.
    Amrouche, C., Dambrine, M., Raudin, Y.: An L p theory of linear elasticity in the half-space. J. Differ. Equ. 253, 906–932 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  91. 119.
    Morassi, A., Rosset, E., Vessella, S.: Stable determination of a rigid inclusion in an anisotropic elastic plate. SIAM J. Math. Anal. 44, 2204–2235 (2012)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andrea Aspri
    • 1
  1. 1.Austrian Academy of SciencesJohann Radon Institute for ComputationalLinzAustria

Personalised recommendations