Advertisement

A Modest Markov Automata Tutorial

  • Arnd HartmannsEmail author
  • Holger Hermanns
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11810)

Abstract

Distributed computing systems provide many important services. To explain and understand why and how well they work, it is common practice to build, maintain, and analyse models of the systems’ behaviours. Markov models are frequently used to study operational phenomena of such systems. They are often represented with discrete state spaces, and come in various flavours, overarched by Markov automata. As such, Markov automata provide the ingredients that enable the study of a wide range of quantitative properties related to risk, cost, performance, and strategy. This tutorial paper gives an introduction to the formalism of Markov automata, to practical modelling of Markov automata in the Modest language, and to their analysis with the Modest Toolset. As case studies, we optimise an attack on Bitcoin, and evaluate the performance of a small but complex resource-sharing computing system.

Notes

Acknowledgments

The authors thank Michaela Klauck (Saarland University) for preparing an initial version of the Modest model appearing in Sect. 5 and for helpful comments on a draft of this paper.

References

  1. 1.
    Amparore, E.G., Balbo, G., Beccuti, M., Donatelli, S., Franceschinis, G.: 30 years of GreatSPN. In: Fiondella, L., Puliafito, A. (eds.) Principles of Performance and Reliability Modeling and Evaluation. SSRE, pp. 227–254. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-30599-8_9CrossRefGoogle Scholar
  2. 2.
    Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Performance evaluation and model checking join forces. Commun. ACM 53(9), 76–85 (2010)CrossRefGoogle Scholar
  3. 3.
    Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)zbMATHGoogle Scholar
  4. 4.
    Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: MoDeST: a compositional modeling formalism for hard and softly timed systems. IEEE Trans. Softw. Eng. 32(10), 812–830 (2006)CrossRefGoogle Scholar
  5. 5.
    Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queueing Networks and Markov Chains - Modeling and Performance Evaluation with Computer Science Applications, 2nd edn. Wiley, Hoboken (2006)CrossRefGoogle Scholar
  6. 6.
    Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language LOTOS. Comput. Netw. 14, 25–59 (1987)Google Scholar
  7. 7.
    Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK: research perspectives and challenges for Bitcoin and cryptocurrencies. In: SP, pp. 104–121. IEEE Computer Society (2015)Google Scholar
  8. 8.
    Braitling, B., Fioriti, L.M.F., Hatefi, H., Wimmer, R., Becker, B., Hermanns, H.: MeGARA: menu-based game abstraction and abstraction refinement of Markov automata. In: QAPL. EPTCS, vol. 154, pp. 48–63 (2014)CrossRefGoogle Scholar
  9. 9.
    Braitling, B., Ferrer Fioriti, L.M., Hatefi, H., Wimmer, R., Becker, B., Hermanns, H.: Abstraction-based computation of reward measures for Markov automata. In: D’Souza, D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 172–189. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46081-8_10CrossRefzbMATHGoogle Scholar
  10. 10.
    Brázdil, T., Hermanns, H., Krcál, J., Kretínský, J., Rehák, V.: Verification of open interactive Markov chains. In: FSTTCS. LIPIcs, vol. 18, pp. 474–485. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)Google Scholar
  11. 11.
    Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: A statistical model checker for nondeterminism and rare events. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 340–358. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-89963-3_20CrossRefGoogle Scholar
  12. 12.
    Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.: JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54580-5_9CrossRefGoogle Scholar
  13. 13.
    Butkova, Y., Hartmanns, A., Hermanns, H.: A Modest approach to modelling and checking Markov automata. In: Parker, D., Wolf, V. (eds.) QEST 2019. LNCS, vol. 1785, pp. 52–69. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-30281-8_4CrossRefGoogle Scholar
  14. 14.
    Butkova, Y., Hatefi, H., Hermanns, H., Krčál, J.: Optimal continuous time Markov decisions. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364, pp. 166–182. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24953-7_12CrossRefGoogle Scholar
  15. 15.
    Butkova, Y., Wimmer, R., Hermanns, H.: Long-run rewards for Markov automata. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 188–203. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54580-5_11CrossRefGoogle Scholar
  16. 16.
    Butkova, Y., Wimmer, R., Hermanns, H.: Markov automata on discount!. In: German, R., Hielscher, K.-S., Krieger, U.R. (eds.) MMB 2018. LNCS, vol. 10740, pp. 19–34. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-74947-1_2CrossRefGoogle Scholar
  17. 17.
    D’Argenio, P.R., Hartmanns, A., Sedwards, S.: Lightweight statistical model checking in nondeterministic continuous time. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11245, pp. 336–353. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-03421-4_22CrossRefGoogle Scholar
  18. 18.
    Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A Storm is coming: a modern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63390-9_31CrossRefGoogle Scholar
  19. 19.
    Eisentraut, C.: Principles of Markov automata. Ph.D. thesis, Saarland University, Saarbrücken, Germany (2017)Google Scholar
  20. 20.
    Eisentraut, C., Hermanns, H., Katoen, J.-P., Zhang, L.: A semantics for every GSPN. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 90–109. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38697-8_6CrossRefGoogle Scholar
  21. 21.
    Eisentraut, C., Hermanns, H., Schuster, J., Turrini, A., Zhang, L.: The quest for minimal quotients for probabilistic and Markov automata. Inf. Comput. 262(Part), 162–186 (2018)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Eisentraut, C., Hermanns, H., Zhang, L.: Concurrency and composition in a stochastic world. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 21–39. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15375-4_3CrossRefzbMATHGoogle Scholar
  23. 23.
    Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous time. In: LICS, pp. 342–351. IEEE Computer Society (2010)Google Scholar
  24. 24.
    Fehnker, A., Chaudhary, K.: Twenty percent and a few days – optimising a Bitcoin majority attack. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS, vol. 10811, pp. 157–163. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-77935-5_11CrossRefGoogle Scholar
  25. 25.
    Fränzle, M., Hahn, E.M., Hermanns, H., Wolovick, N., Zhang, L.: Measurability and safety verification for stochastic hybrid systems. In: HSCC, pp. 43–52. ACM (2011)Google Scholar
  26. 26.
    Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the construction and analysis of distributed processes. STTT 15(2), 89–107 (2013)CrossRefGoogle Scholar
  27. 27.
    Guck, D., Han, T., Katoen, J.-P., Neuhäußer, M.R.: Quantitative timed analysis of interactive Markov chains. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 8–23. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28891-3_4CrossRefGoogle Scholar
  28. 28.
    Guck, D., Hatefi, H., Hermanns, H., Katoen, J.P., Timmer, M.: Analysis of timed and long-run objectives for Markov automata. Logical Methods Comput. Sci. 10(3) (2014)Google Scholar
  29. 29.
    Guck, D., Timmer, M., Hatefi, H., Ruijters, E., Stoelinga, M.: Modelling and analysis of Markov reward automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 168–184. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11936-6_13 CrossRefzbMATHGoogle Scholar
  30. 30.
    Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.P.: A compositional modelling and analysis framework for stochastic hybrid systems. Formal Methods Syst. Des. 43(2), 191–232 (2013)CrossRefGoogle Scholar
  31. 31.
    Hartmanns, A.: A Modest Markov automata tutorial (artifact). 4TU.Centre for Research Data (2019).  https://doi.org/10.4121/uuid:5a73169e-b494-411b-b3a8-051e62efba9e
  32. 32.
    Hartmanns, A., Hermanns, H.: The Modest Toolset: an integrated environment for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54862-8_51CrossRefGoogle Scholar
  33. 33.
    Hartmanns, A., Hermanns, H.: Explicit model checking of very large MDP using partitioning and secondary storage. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364, pp. 131–147. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24953-7_10CrossRefzbMATHGoogle Scholar
  34. 34.
    Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quantitative verification benchmark set. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 344–350. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-17462-0_20CrossRefGoogle Scholar
  35. 35.
    Hatefi, H.: Finite horizon analysis of Markov automata. Ph.D. thesis, Saarland University, Germany (2017). scidok.sulb.uni-saarland.de/volltexte/2017/6743/
  36. 36.
    Hatefi, H., Hermanns, H.: Model checking algorithms for Markov automata. Electron. Commun. EASST 53 (2012)Google Scholar
  37. 37.
    Hatefi, H., Wimmer, R., Braitling, B., Fioriti, L.M.F., Becker, B., Hermanns, H.: Cost vs. time in stochastic games and Markov automata. Formal Asp. Comput. 29(4), 629–649 (2017)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Haverkort, B.R.: Performance of Computer Communication Systems - A Model-Based Approach. Wiley, Hoboken (1998)CrossRefGoogle Scholar
  39. 39.
    Hermanns, H.: Interactive Markov Chains: The Quest for Quantified Quality. LNCS, vol. 2428, pp. 35–55. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45804-2_3CrossRefGoogle Scholar
  40. 40.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle River (1985)zbMATHGoogle Scholar
  41. 41.
    Jackson, J.R.: Jobshop-like queueing systems. Manag. Sci. 10(1), 131–142 (1963)CrossRefGoogle Scholar
  42. 42.
    Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.: Automatic verification of real-time systems with discrete probability distributions. Theor. Comput. Sci. 282(1), 101–150 (2002)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Legay, A., Sedwards, S., Traonouez, L.-M.: Scalable verification of Markov decision processes. In: Canal, C., Idani, A. (eds.) SEFM 2014. LNCS, vol. 8938, pp. 350–362. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-15201-1_23CrossRefGoogle Scholar
  44. 44.
    Milner, R.: Communication and Concurrency. Prentice-Hall, Upper Saddle River (1989)zbMATHGoogle Scholar
  45. 45.
    Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2009). bitcoin.org
  46. 46.
    Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley Series in Probability and Statistics, Wiley, Hoboken (1994)Google Scholar
  47. 47.
    Quatmann, T., Junges, S., Katoen, J.-P.: Markov automata with multiple objectives. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 140–159. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63387-9_7CrossRefGoogle Scholar
  48. 48.
    Rabe, M.N., Schewe, S.: Finite optimal control for time-bounded reachability in CTMDPs and continuous-time Markov games. Acta Inf. 48(5–6), 291–315 (2011)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Segala, R.: Modeling and verification of randomized distributed real-time systems. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge (1995)Google Scholar
  50. 50.
    Timmer, M.: Efficient modelling, generation and analysis of Markov automata. Ph.D. thesis, University of Twente, Enschede (2013)Google Scholar
  51. 51.
    Timmer, M., Katoen, J.-P., van de Pol, J., Stoelinga, M.I.A.: Efficient modelling and generation of Markov automata. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 364–379. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32940-1_26CrossRefGoogle Scholar
  52. 52.
    Timmer, M., Katoen, J.P., van de Pol, J., Stoelinga, M.: Confluence reduction for Markov automata. Theor. Comput. Sci. 655, 193–219 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of TwenteEnschedeThe Netherlands
  2. 2.Saarland UniversitySaarbrückenGermany
  3. 3.Institute of Intelligent SoftwareGuangzhouChina

Personalised recommendations