Advertisement

Explanation-Friendly Query Answering Under Uncertainty

  • Maria Vanina MartinezEmail author
  • Gerardo I. Simari
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11810)

Abstract

Many tasks often regarded as requiring some form of intelligence to perform can be seen as instances of query answering over a semantically rich knowledge base. In this context, two of the main problems that arise are: (i) uncertainty, including both inherent uncertainty (such as events involving the weather) and uncertainty arising from lack of sufficient knowledge; and (ii) inconsistency, which involves dealing with conflicting knowledge. These unavoidable characteristics of real world knowledge often yield complex models of reasoning; assuming these models are mostly used by humans as decision-support systems, meaningful explainability of their results is a critical feature. These lecture notes are divided into two parts, one for each of these basic issues. In Part 1, we present basic probabilistic graphical models and discuss how they can be incorporated into powerful ontological languages; in Part 2, we discuss both classical inconsistency-tolerant semantics for ontological query answering based on the concept of repair and other semantics that aim towards more flexible yet principled ways to handle inconsistency. Finally, in both parts we ponder the issue of deriving different kinds of explanations that can be attached to query results.

Notes

Acknowledgments

This work was partially supported by funds provided by CONICET, Agencia Nacional de Promoción Científica y Tecnológica, Universidad Nacional del Sur (UNS), Argentina, and by the EU H2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement 690974 for the project “MIREL: MIning and REasoning with Legal texts”.

References

  1. 1.
    Alonso, J.M., Castiello, C., Mencar, C.: A bibliometric analysis of the explainable artificial intelligence research field. In: Medina, J., et al. (eds.) IPMU 2018. CCIS, vol. 853, pp. 3–15. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-91473-2_1CrossRefGoogle Scholar
  2. 2.
    Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent databases. In: Proceedings of PODS, pp. 68–79 (1999)Google Scholar
  3. 3.
    Arioua, A., Croitoru, M.: Dialectical characterization of consistent query explanation with existential rules. In: FLAIRS: Florida Artificial Intelligence Research Society (2016)Google Scholar
  4. 4.
    Arioua, A., Tamani, N., Croitoru, M.: Query answering explanation in inconsistent datalog\(+/-\) knowledge bases. In: Chen, Q., Hameurlain, A., Toumani, F., Wagner, R., Decker, H. (eds.) DEXA 2015. LNCS, vol. 9261, pp. 203–219. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-22849-5_15CrossRefzbMATHGoogle Scholar
  5. 5.
    Atserias, A., Dawar, A., Kolaitis, P.G.: On preservation under homomorphisms and unions of conjunctive queries. J. ACM (JACM) 53(2), 208–237 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Baget, J., Mugnier, M., Rudolph, S., Thomazo, M.: Walking the complexity lines for generalized guarded existential rules. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 712–717 (2011)Google Scholar
  7. 7.
    Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 21–33. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-24609-1_5CrossRefzbMATHGoogle Scholar
  8. 8.
    Barber, D.: Bayesian Reasoning and Machine Learning. Cambridge University Press, Cambridge (2012)Google Scholar
  9. 9.
    Beeri, C., Vardi, M.Y.: The implication problem for data dependencies. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 73–85. Springer, Heidelberg (1981).  https://doi.org/10.1007/3-540-10843-2_7CrossRefGoogle Scholar
  10. 10.
    Bienvenu, M.: Inconsistency-tolerant conjunctive query answering for simple ontologies. In: Kazakov, Y., Lembo, D., Wolter, F. (eds.) Proceedings of DL, vol. 846. CEUR-WS.org (2012)Google Scholar
  11. 11.
    Bienvenu, M., Bourgaux, C., Goasdoue, F.: Explaining inconsistency-tolerant query answering over description logic knowledge bases. In: Proceedings of AAAI 2016, pp. 900–906. AAAI Press (2016)Google Scholar
  12. 12.
    Bienvenu, M., Rosati, R.: Tractable approximations of consistent query answering for robust ontology-based data access. In: Proceedings of IJCAI, pp. 775–781 (2013)Google Scholar
  13. 13.
    Calì, A., Gottlob, G., Kifer, M.: Taming the infinite chase: query answering under expressive relational constraints. In: Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning (KR), pp. 70–80 (2008)Google Scholar
  14. 14.
    Calì, A., Gottlob, G., Kifer, M.: Taming the infinite chase: query answering under expressive relational constraints. J. Artif. Intell. Res. (JAIR) 48, 115–174 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Calì, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for tractable query answering over ontologies. In: Proceedings of the ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS), pp. 77–86 (2009)Google Scholar
  16. 16.
    Calì, A., Gottlob, G., Pieris, A.: Towards more expressive ontology languages: the query answering problem. Artif. Intell. J. (AIJ) 193, 87–128 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Calì, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for tractable query answering over ontologies. J. Web Sem. 14, 57–83 (2012)CrossRefGoogle Scholar
  18. 18.
    Ceylan, İ.İ., Borgwardt, S., Lukasiewicz, T.: Most probable explanations for probabilistic database queries. In: Proceedings of IJCAI, pp. 950–956 (2017)Google Scholar
  19. 19.
    Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational data bases. In: Proceedings of the ACM Symposium on Theory of Computing (STOC), pp. 77–90 (1977)Google Scholar
  20. 20.
    Deagustini, C.A.D., Martínez, M.V., Falappa, M.A., Simari, G.R.: Improving inconsistency resolution by considering global conflicts. In: Straccia, U., Calì, A. (eds.) SUM 2014. LNCS (LNAI), vol. 8720, pp. 120–133. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11508-5_11CrossRefGoogle Scholar
  21. 21.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and \(n\)-person games. Artif. Intell. 77, 321–357 (1995)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query answering. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572, pp. 207–224. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36285-1_14CrossRefGoogle Scholar
  23. 23.
    Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query answering. Theoret. Comput. Sci. 336(1), 89–124 (2005)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Falappa, M.A., Kern-Isberner, G., Simari, G.R.: Explanations, belief revision and defeasible reasoning. Artif. Intell. 141(1–2), 1–28 (2002)MathSciNetCrossRefGoogle Scholar
  25. 25.
    García, A.J., Simari, G.R.: Defeasible logic programming: delp-servers, contextual queries, and explanations for answers. Argument Comput. 5(1), 63–88 (2014)CrossRefGoogle Scholar
  26. 26.
    García, A.J., Simari, G.R.: Defeasible logic programming: an argumentative approach. TPLP 4(1–2), 95–138 (2004)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Gottlob, G., Manna, M., Pieris, A.: Combining decidability paradigms for existential rules. Theory Practice Logic Program. (TPLP) 13(4–5), 877–892 (2013)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Gottlob, G., Orsi, G., Pieris, A., Šimkus, M.: Datalog and its extensions for semantic web databases. In: Eiter, T., Krennwallner, T. (eds.) Reasoning Web 2012. LNCS, vol. 7487, pp. 54–77. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33158-9_2CrossRefzbMATHGoogle Scholar
  29. 29.
    Gottlob, G., Lukasiewicz, T., Martinez, M.V., Simari, G.I.: Query answering under probabilistic uncertainty in datalog+/- ontologies. Ann. Math. Artif. Intell. 69(1), 37–72 (2013)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Grover, S., Pulice, C., Simari, G.I., Subrahmanian, V.S.: BEEF: balanced English explanations of forecasts. IEEE Trans. Comput. Soc. Syst. 6(2), 350–364 (2019)CrossRefGoogle Scholar
  31. 31.
    Hansson, S.O.: Semi-revision. J. Appl. Non-Classical Logic 7, 151–175 (1997)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant semantics for description logics. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp. 103–117. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15918-3_9CrossRefGoogle Scholar
  33. 33.
    Leone, N., Manna, M., Terracina, G., Veltri, P.: Efficiently computable Datalog programs. In: Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning (KR), pp. 13–23 (2012)Google Scholar
  34. 34.
    Lukasiewicz, T., Martinez, M.V., Orsi, G., Simari, G.I.: Heuristic ranking in tightly coupled probabilistic description logics. In: Proceedings of UAI 2012, pp. 554–563 (2012)Google Scholar
  35. 35.
    Lukasiewicz, T., Martinez, M.V., Orsi, G., Simari, G.I.: Exact and approximate query answering in tightly coupled probabilistic datalog+/-. Forthcoming (2019)Google Scholar
  36. 36.
    Lukasiewicz, T., Martinez, M.V., Simari, G.I.: Inconsistency handling in Datalog+/- ontologies. In: Proceedings of ECAI, pp. 558–563 (2012)Google Scholar
  37. 37.
    Martinez, M.V., Deagustini, C.A.D., Falappa, M.A., Simari, G.R.: Inconsistency-tolerant reasoning in datalog\(^{\pm }\) ontologies via an argumentative semantics. In: Bazzan, A.L.C., Pichara, K. (eds.) IBERAMIA 2014. LNCS (LNAI), vol. 8864, pp. 15–27. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-12027-0_2CrossRefGoogle Scholar
  38. 38.
    Martinez, M.V., Pugliese, A., Simari, G.I., Subrahmanian, V.S., Prade, H.: How dirty is your relational database? An axiomatic approach. In: Proceedings of ECSQARU, pp. 103–114 (2007)Google Scholar
  39. 39.
    Milani, M., Bertossi, L.: Tractable query answering and optimization for extensions of weakly-sticky Datalog+/-. arXiv:1504.03386 (2015)
  40. 40.
    Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (1988)CrossRefGoogle Scholar
  42. 42.
    Poole, D.: The independent choice logic for modelling multiple agents under uncertainty. Artif. Intell. 94(1–2), 7–56 (1997)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Ribeiro, M.M., Wassermann, R.: Minimal change in AGM revision for non-classical logics. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Fourteenth International Conference, KR 2014, 20–24 July 2014, Vienna, Austria (2014)Google Scholar
  44. 44.
    Richardson, A., Rosenfeld, A.: A survey of interpretability and explainability in human-agent systems. In: XAI Workshop on Explainable Artificial Intelligence, pp. 137–143 (2018)Google Scholar
  45. 45.
    Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62, 107–136 (2006)CrossRefGoogle Scholar
  46. 46.
    Shortliffe, E.H., Davis, R., Axline, S.G., Buchanan, B.G., Green, C.C., Cohen, S.N.: Computer-based consultations in clinical therapeutics: explanation and rule acquisition capabilities of the mycin system. Comput. Biomed. Res. 8(4), 303–320 (1975)CrossRefGoogle Scholar
  47. 47.
    Simari, G.I., Molinaro, C., Martinez, M.V., Lukasiewicz, T., Predoiu, L.: Ontology-Based Data Access Leveraging Subjective Reports. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-319-65229-0CrossRefGoogle Scholar
  48. 48.
    Tifrea-Marciuska, O.: Personalised search for the social semantic web. Ph.D. thesis, Department of Computer Science, University of Oxford (2016)Google Scholar
  49. 49.
    Vardi, M.Y.: The complexity of relational query languages (extended abstract). In: Proceedings of the ACM Symposium on Theory of Computing (STOC), pp. 137–146 (1982)Google Scholar
  50. 50.
    Wainwright, M.J., Jordan, M.I., et al.: Graphical models, exponential families, and variational inference. Found. Trends® Mach. Learn. 1(1–2), 1–305 (2008)CrossRefGoogle Scholar
  51. 51.
    Wang, S., Pan, J.Z., Zhao, Y., Li, W., Han, S., Han, D.: Belief base revision for datalog+/- ontologies. In: Kim, W., Ding, Y., Kim, H.-G. (eds.) JIST 2013. LNCS, vol. 8388, pp. 175–186. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-06826-8_14CrossRefGoogle Scholar
  52. 52.
    Wassermann, R.: An algorithm for belief revision. In: Proceedings of the Seventh International Conference Principles of Knowledge Representation and Reasoning, KR 2000, 11–15 April 2000, Breckenridge, Colorado, USA, pp. 345–352 (2000)Google Scholar
  53. 53.
    White, C.C.: A survey on the integration of decision analysis and expert systems for decision support. IEEE Trans. Syst. Man Cybern. 20(2), 358–364 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer Science, Institute for Computer Science (UBA–CONICET)Universidad de Buenos Aires (UBA)Ciudad Autonoma de Buenos AiresArgentina
  2. 2.Department of Computer Science and Engineering, Institute for Computer Science and Engineering (UNS–CONICET)Universidad Nacional del Sur (UNS)Bahia BlancaArgentina

Personalised recommendations