Advertisement

Sequential Reprogramming of Biological Network Fate

  • Jérémie Pardo
  • Sergiu IvanovEmail author
  • Franck Delaplace
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11773)

Abstract

A major challenge in precision medicine consists in finding the appropriate network rewiring to induce a particular reprogramming of the cell phenotype. The rewiring is caused by specific network action either inhibiting or over-expressing targeted molecules. In some cases, a therapy abides by a time-scheduled drug administration protocol. Furthermore, some diseases are induced by a sequence of mutations leading to a sequence of actions on molecules. In this paper, we extend previous works on abductive-based inference of network reprogramming [3] by investigating the sequential control of Boolean networks. We present a novel theoretical framework and give an upper bound on the size of control sequences as a function of the number of observed variables. We also define an algorithm for inferring minimal parsimonious control sequences allowing to reach a final state satisfying a particular phenotypic property.

Keywords

Dynamical systems reprogramming Boolean Control Network Control sequence Abductive reasoning Drug target prediction Sequential therapy 

References

  1. 1.
    Barabási, A.-L., Gulbahce, N., Loscalzo, J.: Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011)CrossRefGoogle Scholar
  2. 2.
    Biane, C., Delaplace, F.: Abduction based drug target discovery using Boolean control network. In: Feret, J., Koeppl, H. (eds.) CMSB 2017. LNCS, vol. 10545, pp. 57–73. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-67471-1_4CrossRefGoogle Scholar
  3. 3.
    Biane, C., Delaplace, F.: Causal reasoning on Boolean control networks based on abduction: theory and application to cancer drug discovery. IEEE/ACM Trans. Comput. Biol. Bioinf. (2018). (Epub ahead of print)Google Scholar
  4. 4.
    Burga, L.N., et al.: Loss of BRCA1 leads to an increase in epidermal growth factor receptor expression in mammary epithelial cells, and epidermal growth factor receptor inhibition prevents estrogen receptor-negative cancers in BRCA1-mutant mice. Breast Cancer Res. 13(2), R30 (2011)CrossRefGoogle Scholar
  5. 5.
    Chau, C.H., Rixe, O., McLeod, H., Figg, W.D.: Validation of analytic methods for biomarkers used in drug development. Clin. Cancer Res. 14(19), 5967–5976 (2008)CrossRefGoogle Scholar
  6. 6.
    Cheng, A., Esparza, J., Palsberg, J.: Complexity results for 1-safe nets. Theoret. Comput. Sci. 147(1), 117–136 (1995)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Creixell, P., et al.: Kinome-wide decoding of network-attacking mutations rewiring cancer signaling. Cell 163(1), 202–217 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Csermely, P., Korcsmàros, T., Kiss, H.J.M., London, G., Nussinov, R.: Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review. Pharmacol. Ther. 138(3), 333–408 (2013)CrossRefGoogle Scholar
  9. 9.
    Fearon, E.R., Vogelstein, B.: A genetic model for colorectal tumorigenesis. Cell 61(5), 759–767 (1990)CrossRefGoogle Scholar
  10. 10.
    Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990)zbMATHGoogle Scholar
  11. 11.
    Lee, M., et al.: Sequential application of anti-cancer drugs enhances cell death by re-wiring apoptotic signaling networks. Cell 149, 780–794 (2012)CrossRefGoogle Scholar
  12. 12.
    Lin, P.-C.K., Khatri, S.P.: Application of Max-SAT-based ATPG to optimal cancer therapy design. BMC Genom. 13 Suppl 6(Suppl. 6), S5 (2012)CrossRefGoogle Scholar
  13. 13.
    Mandon, H., Haar, S., Paulevé, L.: Temporal reprogramming of Boolean networks. In: Feret, J., Koeppl, H. (eds.) CMSB 2017. LNCS, vol. 10545, pp. 179–195. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-67471-1_11CrossRefGoogle Scholar
  14. 14.
    Mandon, H., Su, C., Pang, J., Paul, S., Haar, S., Paulevé, L.: Algorithms for the sequential reprogramming of Boolean networks. IEEE/ACM Trans. Comput. Biol. Bioinf. (2019 to appear)Google Scholar
  15. 15.
    Murrugarra, D., Veliz-Cuba, A., Aguilar, B., Laubenbacher, R.: Identification of control targets in Boolean molecular network models via computational algebra. BMC Syst. Biol. 10(1), 94 (2016)CrossRefGoogle Scholar
  16. 16.
    Sahni, N., et al.: Edgotype: a fundamental link between genotype and phenotype. Curr. Opin. Genet. Dev. 23(6), 649–657 (2013)CrossRefGoogle Scholar
  17. 17.
    Strimbu, K., Tavel, J.A.: What are Biomarkers? Curr. Opin. HIV AIDS 5(6), 463–466 (2011)CrossRefGoogle Scholar
  18. 18.
    Vogel, G.: Reprogramming cells. Science 322(5909), 1766–1767 (2008)CrossRefGoogle Scholar
  19. 19.
    Zanudo, J.G.T., Albert, R.: Cell fate reprogramming by control of intracellular network dynamics. PLoS Comput. Biol. 11(4), e1004193 (2015)CrossRefGoogle Scholar
  20. 20.
    Zhong, Q., et al.: Edgetic perturbation models of human inherited disorders. Mol. Syst. Biol. 5(321), 321 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jérémie Pardo
    • 1
  • Sergiu Ivanov
    • 1
    Email author
  • Franck Delaplace
    • 1
  1. 1.IBISC, Univ Évry, Paris-Saclay UniversityÉvryFrance

Personalised recommendations