The Fake News Vaccine

A Content-Agnostic System for Preventing Fake News from Becoming Viral
  • Oana Balmau
  • Rachid Guerraoui
  • Anne-Marie Kermarrec
  • Alexandre MaurerEmail author
  • Matej Pavlovic
  • Willy Zwaenepoel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11704)


While spreading fake news is an old phenomenon, today social media enables misinformation to instantaneously reach millions of people. Content-based approaches to detect fake news, typically based on automatic text checking, are limited. It is indeed difficult to come up with general checking criteria. Moreover, once the criteria are known to an adversary, the checking can be easily bypassed. On the other hand, it is practically impossible for humans to check every news item, let alone preventing them from becoming viral.

We present Credulix, the first content-agnostic system to prevent fake news from going viral. Credulix is implemented as a plugin on top of a social media platform and acts as a vaccine. Human fact-checkers review a small number of popular news items, which helps us estimate the inclination of each user to share fake news. Using the resulting information, we automatically estimate the probability that an unchecked news item is fake. We use a Bayesian approach that resembles Condorcet’s Theorem to compute this probability. We show how this computation can be performed in an incremental, and hence fast manner.


  1. 1.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
  6. 6.
  7. 7.
  8. 8.
  9. 9.
  10. 10.
  11. 11.
  12. 12.
  13. 13.
  14. 14.
    Twissandra Twitter clone, build on top of cassandra.
  15. 15.
    Austen-Smith, D., Banks, J.S.: Information aggregation, rationality, and the condorcet jury theorem (1996)CrossRefGoogle Scholar
  16. 16.
    Balmau, O., Guerraoui, R., Kermarrec, A.M., Maurer, A., Pavlovic, M., Zwaenepoel, W.: Limiting the spread of fake news on social media platforms by evaluating users’ trustworthiness. arXiv preprint arXiv:1808.09922 (2018)
  17. 17.
    Ciampaglia, G.L., Shiralkar, P., Rocha, L.M., Bollen, J., Menczer, F., Flammini, A.: Computational fact checking from knowledge networks. PLoS One 10, e0128193 (2015)CrossRefGoogle Scholar
  18. 18.
    Dewan, P., Kumaraguru, P.: Towards automatic real time identification of malicious posts on facebook. In: PST (2015)Google Scholar
  19. 19.
    Gupta, A., Kumaraguru, P.: Credibility ranking of tweets during high impact events. In: PSOSM (2012)Google Scholar
  20. 20.
    Gupta, A., Kumaraguru, P., Castillo, C., Meier, P.: TweetCred: real-time credibility assessment of content on Twitter. In: Aiello, L.M., McFarland, D. (eds.) SocInfo 2014. LNCS, vol. 8851, pp. 228–243. Springer, Cham (2014). Scholar
  21. 21.
    Gupta, A., Lamba, H., Kumaraguru, P., Joshi, A.: Faking sandy: characterizing and identifying fake images on twitter during hurricane sandy. In: WWW (2013)Google Scholar
  22. 22.
    Imran, M., Castillo, C., Diaz, F., Vieweg, S.: Processing social media messages in mass emergency: a survey. ACM CSUR (2015)Google Scholar
  23. 23.
    Jenders, M., Kasneci, G., Naumann, F.: Analyzing and predicting viral tweets. In: WWW Companion (2013)Google Scholar
  24. 24.
    Kim, J., Tabibian, B., Oh, A., Schölkopf, B., Gomez Rodriguez, M.: Leveraging the crowd to detect and reduce the spread of fake news and misinformation. In: WSDM (2018)Google Scholar
  25. 25.
    Koch, K.R.: Bayes’ theorem. In: Bayesian Inference with Geodetic Applications (1990)CrossRefGoogle Scholar
  26. 26.
    Kolari, P., Java, A., Finin, T., Oates, T., Joshi, A.: Detecting spam blogs: a machine learning approach. In: AAAI (2006)Google Scholar
  27. 27.
    Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media? In: WWW (2010)Google Scholar
  28. 28.
    Leskovec, J., Krevl, A.: SNAP datasets: stanford large network dataset collection. (2014)
  29. 29.
    Markines, B., Cattuto, C., Menczer, F.: Social spam detection. In: AIRWeb (2009)Google Scholar
  30. 30.
    Resnick, P., Kuwabara, K., Zeckhauser, R., Friedman, E.: Reputation systems. Commun. ACM 43, 45–48 (2000)CrossRefGoogle Scholar
  31. 31.
    Resnick, P., Varian, H.R.: Recommender systems. Commun. ACM 40, 56–59 (1997)CrossRefGoogle Scholar
  32. 32.
    Rish, I.: An empirical study of the naïve bayes classifier. In: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, vol. 3, January 2001Google Scholar
  33. 33.
    Saikaew, K.R., Noyunsan, C.: Features for measuring credibility on facebook information. Int. Sch. Sci. Res. Innov. 9, 174–177 (2015)Google Scholar
  34. 34.
    Viviani, M., Pasi, G.: A multi-criteria decision making approach for the assessment of information credibility in social media. In: Petrosino, A., Loia, V., Pedrycz, W. (eds.) WILF 2016. LNCS (LNAI), vol. 10147, pp. 197–207. Springer, Cham (2017). Scholar
  35. 35.
    Zabell, S.L.: The rule of succession. Erkenntnis 31, 283–321 (1989)CrossRefGoogle Scholar
  36. 36.
    Zhang, H.: The optimality of naive bayes. In: Proceedings of the Seventeenth International Florida Artificial Intelligence Research Society Conference, pp. 562–567 (2004)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Oana Balmau
    • 3
  • Rachid Guerraoui
    • 1
  • Anne-Marie Kermarrec
    • 2
  • Alexandre Maurer
    • 1
    Email author
  • Matej Pavlovic
    • 1
  • Willy Zwaenepoel
    • 3
  1. 1.École Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.MediegoCesson-SévignéFrance
  3. 3.University of SydneyCamperdownAustralia

Personalised recommendations