Advertisement

Skullcaps (Scutellaria spp.): Ethnobotany and Current Research

  • Lani Irvin
  • Carissa Jackson
  • Aisha L. Hill
  • Richa Bajaj
  • Chonour Mahmoudi
  • Brajesh N. Vaidya
  • Nirmal JosheeEmail author
Chapter

Abstract

As a genus, Scutellaria designates a group of medicinal species employed for centuries as a potential cure for various ailments in many traditional medicine practices. Preparations derived from Scutellaria imbue crude drugs, concoctions, decoctions, essential oils, infusions, tinctures, tonics, and teas. Therapies are denoted as “complementary” when practiced in addition to conventional medical treatments or as “alternative” when carried out instead of conventional medical treatment. Studies have shown the designs of complementary and alternative medicine (CAM) therapies to safely and effectively treat and prevent a varied range of health conditions including cancer, cardiovascular disease, and osteoarthritis. Scutellaria, commonly known as skullcap, is represented by over 360 species belonging to the mint family Lamiaceae. The resulting forms of Scutellaria-based medicinal preparations concentrate in extracting adequate quantities of bioactive chemicals, or phytochemicals produced by plants. These phytochemicals serve in protection from predators as well as a way to ensure ecological adaptation for extreme weather survival. Further, a number of studies conducted to ascertain the role of bioactive compounds extracted from Scutellaria using in vitro and in vivo approaches have shown a lot of promise as antitumor and anti-inflammatory properties. Scutellaria species have been observed to have high amount of polyphenols, particularly flavonoids like baicalein, baicalin, wogonin, and wogonoside. Others include apigenin, chrysin, scutellarin, and scutellarien that have been extensively studied for their bioactivity using cell and animal model systems. Scutellaria genus exhibits great diversity in the presence of glandular and nonglandular trichomes on aboveground plant parts. The glandular trichomes are the organs specifically involved in chemical biosynthesis and ecophysiological adaptation and are employed as a taxonomic tool to differentiate various species.

Keywords

Skullcap Habitat Traditional medicinal systems Flavonoids 

Notes

Acknowledgments

This work would not have been possible without the financial support of the capacity-building USDA NIFA entitled Germplasm conservation, anti-adipocytic and anticancer activity and metabolic engineering in the genus Scutellaria. CSRESS Award 3 2011-38821-30918. P.I.: N Joshee. A special thanks is given to Dr. Cindy Hargrove Rivers for editing the manuscript.

References

  1. Amiri MS, Jabbarzadeh P, Akhondi M (2012) An ethnobotanical survey of medicinal plants used by indigenous people in Zangelanlo district, Northeast Iran. J Med Plant Res 6(5):749–753Google Scholar
  2. An BK, Kwon HS, Lee BK et al (2010) Effects of dietary skullcap (Scutellaria baicalensis) extract on laying performance and lipid oxidation of chicken eggs. Asian-Aust J Anim Sci 23(6):772–776CrossRefGoogle Scholar
  3. Attar F, Joharchi MR (2002) New plant records from Iran. Iran J Bot 9:223–228Google Scholar
  4. Ayyanar M, Ignacimuthu S (2005) Medicinal plants used by the tribals of Tirunelveli hills, Tamil Nadu to treat poisonous bites and skin diseases. IJTK 4(3):229–236Google Scholar
  5. Bardakci H, Skaltsa H, Milosevic-Ifantis et al (2015) Antioxidant activities of several Scutellaria taxa and bioactive phytoconstituents from Scutellaria hastifolia L. Ind Crop Prod 77:196–203CrossRefGoogle Scholar
  6. Bisio A, Coralo A, Gastaldo P et al (1998) Glandular hairs and secreted material on Salvia blepharophylla Brandegee ex Epling grown in Italy. Ann Bot 83:441–452CrossRefGoogle Scholar
  7. Bodeker G, Ong CK, Grundy C et al (2005) In: Mosaddegh M, Naghibi F (eds) WHO global atlas of traditional, complementary and alternative medicine. World Health Organization, Kobe, Japan, pp 160–164Google Scholar
  8. Boyle S, Doolan P, Andrews C et al (2011) Evaluation of quality control strategies in Scutellaria herbal medicines. J Pharm Biomed Anal 54(5):951–957PubMedCrossRefPubMedCentralGoogle Scholar
  9. CBOL Plant Working Group (2009) A DNA barcode for land plants. Proc Natl Acad Sci U S A 4(106):12794–12797CrossRefGoogle Scholar
  10. Chamberlin RV (1911) The ethno-botany of the Gosiute Indians. Proc Acad Natl Sci Phila 63(1):24–99Google Scholar
  11. Chen S, Yao H, Han J et al (2010) Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One 5(1):e8613.  https://doi.org/10.1371/journal.pone.0008613CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chen H, Gao Y, Wu J et al (2014) Exploring therapeutic potentials of baicalin and its aglycone baicalein for hematological malignancies. Cancer Lett 354(1):5–11PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chen S, Yu H, Luo H et al (2016) Conservation and sustainable use of medicinal plants: problems, progress, and prospects. Chin Med 11:37PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cho S, Jeon G, Kim H et al (2013) Effects of dietary Scutellaria baicalensis extract on growth, feed utilization and challenge test of olive flounder (Paralichthys olivaceus). Asian-Aust J Anim Sci 26(1):90–96CrossRefGoogle Scholar
  15. Chrysin C80105 (2017) Sigma-Aldrich. http://www.sigmaaldrich.com/catalog/product/aldrich/c80105?lang=en&region=US. Accessed 28 Sept 2017
  16. Cole IB, Saxena PK, Murch SJ (2007) Medical biotechnology in the genus Scutellaria. In Vitro Cell Dev Biol Plant 43:318–327CrossRefGoogle Scholar
  17. Cole IB, Coa J, Alan AR et al (2008) Comparisons of Scutellaria baicalensis, Scutellaria lateriflora and Scutellaria racemosa: genome size, antioxidant potential and Phytochemistry. Planta Med 74:474–481PubMedCrossRefGoogle Scholar
  18. Cook NC, Samman S (1996) Flavonoids—chemistry, metabolism, cardioprotective effects, and dietary sources. J Nutr Biochem 7(2):66–76CrossRefGoogle Scholar
  19. Das AK, Dutta BK, Sharma GD (2008) Medicinal plants used by different tribes of Cachar district, Assam. IJTK 7(3):446–454Google Scholar
  20. de Olivera AB, de Mendonca M, Meira RMSA (2013) Anatomy of vegetative organs of Scutellaria agrestis, a medicinal plant cultivated by riverine populations of the Brazilian Amazon. Braz J Pharmacog 23(3):386–397CrossRefGoogle Scholar
  21. Dereboylu AE, Sarikahya NB, Sengonca N et al (2012) Glandular Trichomes morphology, chemical composition and antimicrobial activity of the essential oil of three endemic Scutellaria taxa (Lamiaceae). Asian J Chem 24(11):4911–4916Google Scholar
  22. Dong Z, Li N, Zhang P et al (2016) An efficient chemical synthesis of Scutellarein: an in vivo metabolite of Scutellarin. Molecules 21(3):263PubMedPubMedCentralCrossRefGoogle Scholar
  23. Dubey NK, Kumar R, Tripathi P (2004) Global promotion of herbal medicine: India’s opportunity. Curr Med 86:37–41Google Scholar
  24. eFloras (2015) Scutellaria baicalensis Georgi. http://efloras.org/florataxon.aspx?flora_id=3&taxon_id=200020285. Accessed 1 Nov 2015
  25. Emtiazi M, Nazem E, Keshavarz M et al (2012) Relation between body humors and hypercholesterolemia: an Iranian traditional medicine perspective based on the teaching of Avicenna. Iran Red Crescent Med J 14(3):133–138Google Scholar
  26. Ersöz T, Taşdemĭr D, Çaliş İ (2002) Phenylethanoid glycosides from Scutellaria galericulata. Turk J Chem 26:465–471Google Scholar
  27. Eshima S, Yokoyama S, Abe T et al (2015) Multi-pathway cellular analysis on crude natural drugs/herbs from Japanese Kampo formulations. PLoS One 10(6):e0128872.  https://doi.org/10.1371/journal.pone.0128872CrossRefPubMedPubMedCentralGoogle Scholar
  28. Federal Register (2002) Endangered and threatened wildlife and plants; reclassification of Scutellaria montana (large-flowered skullcap) from endangered to threatened. Fed Regist 67:1662–1668Google Scholar
  29. Formisano C, Rigano D, Senatore F et al (2013) Essential oils of three species of Scutellaria and their influence on Spodoptera littoralis. Biochem Syst Ecol 48:206–210CrossRefGoogle Scholar
  30. Foster S (2012) Adulteration of skullcap with American germander. HerbalGram 93:34–41Google Scholar
  31. Fu Y, Luo J, Jia Z et al (2014) Baicalein protects against type 2 diabetes via promoting islet β-cell function in obese diabetic mice. Int J Endocrinol 2014:846742.  https://doi.org/10.1155/2014/846742CrossRefPubMedPubMedCentralGoogle Scholar
  32. Fukamachi H, Matsumoto C, Omiya Y et al (2015) Effects of hangeshashinto on growth of oral microorganisms. Evid Based Complement Alternat Med 2015:512947.  https://doi.org/10.1155/2015/512947CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gafner S (2015) Skullcap adulteration laboratory guidance document. Botanical Adulterants Program. www.botancicaladulterants.org
  34. Gao X, Fuseda K, Shibata T et al (2005) Kampo medicines for mite antigen-induced allergic dermatitis in NC/Nga mice. eCAM 2(2):191–199PubMedPubMedCentralGoogle Scholar
  35. Gao J, Sanchez-Medina A, Pendry B et al (2008) Validation of a HPLC method for flavonoid biomarkers in skullcap (Scutellaria) and its use to illustrate wide variability in the quality of commercial tinctures. J Pharm Pharm Sci 11(1):77.  https://doi.org/10.18433/j39g6vCrossRefPubMedPubMedCentralGoogle Scholar
  36. Gershenzon J, Maffei M, Croteau R (1989) Biochemical and histochemical localization of monoterpene biosynthesis in glandular trichomes of spearmint (Mentha spicata). Plant Physiol 89:1351–1357PubMedPubMedCentralCrossRefGoogle Scholar
  37. Ghannadi A, Mehregan I (2003) Essential oil of one of the Iranian skullcaps. Z Naturforsch C Bio Sci C58(5–6):316–318CrossRefGoogle Scholar
  38. Ghimire SK, Aumeeruddy-Thomas Y (2009) Ethnobotanical classification and plant nomenclature system of high altitude agro-pastoralists in Dolpo, Nepal. Bot Orientalis: J P Sci 6:56–68CrossRefGoogle Scholar
  39. Glas JJ, Schimmel BCJ, Alsba JM et al (2012) Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. Int J Mol Sci 13:17077–17103PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gu T, Zhong Y, Lu Y et al (2017) Synthesis and bioactivity characterization of Scutellarein sulfonated derivative. Molecules 22(6):E1028.  https://doi.org/10.3390/molecules22061028CrossRefPubMedGoogle Scholar
  41. Guo X, Wang X, Su W et al (2011) DNA barcodes for discriminating the medicinal plant Scutellaria baicalensis (Lamiaceae) and its adulterants. Biol Pharm Bull 34(8):1198–1203PubMedCrossRefPubMedCentralGoogle Scholar
  42. Hattori S (1930) Spectrography of the flavone series. III. The constitution of wogonin. Acta Phytochim 5:99–116Google Scholar
  43. Heo H, Shin Y, Cho W et al (2009) Memory improvement in ibotenic acid induced model rats by extracts of Scutellaria baicalensis. J Ethnopharmacol 122(1):20–27PubMedCrossRefPubMedCentralGoogle Scholar
  44. Higuchi M, Terabayashi S (2003) Crude drugs I: taxonomical items, collection and cultivation, production etc. In: Ogihara Y, Aburada M (eds) Sho-Saiko-to: scientific evaluation and clinical applications. Taylor and Francis, London, pp 22–39Google Scholar
  45. Hill AL (2014) Trichome biology and medicinal constituent distribution in genus Scutellaria. Dissertation, Fort Valley State UniversityGoogle Scholar
  46. Huan SK, Wang K, Yeh S et al (2012) Scutellaria baicalensis alleviates Cantharidin-induced rat hemorrhagic cystitis through inhibition of cyclooxygenase-2 overexpression. Molecules 17:6277–6289PubMedPubMedCentralCrossRefGoogle Scholar
  47. Huchelmann A, Boutry M, Hachez C (2017) Plant glandular trichomes: natural cell factories of high biotechnological interest. Plant Physiol 175(1):6–22PubMedPubMedCentralCrossRefGoogle Scholar
  48. Islam MN, Downey F, Ng CK (2011) Comparative analysis of bioactive phytochemicals from Scutellaria baicalensis, Scutellaria lateriflora, Scutellaria racemosa, Scutellaria tomentosa and Scutellaria wrightii by LC-DAD-MS. Metabolomics 7(3):446–453CrossRefGoogle Scholar
  49. Iwase S, Yamaguchi T, Miyaji T et al (2012) The clinical use of Kampo medicines (traditional Japanese herbal treatments) for controlling cancer patients’ symptoms in Japan: a national cross-sectional survey. BMC Complement Altern Med 12:222.  https://doi.org/10.1186/1472-6882-12-222CrossRefPubMedPubMedCentralGoogle Scholar
  50. Jamzad Z (2012) Lamiaceae. In: Flora of Iran. Research Institute of Forests & Rangelands, TehranGoogle Scholar
  51. Jang SI, Kim HJ, Hwang KM et al (2003) Hepatoprotective effect of Baicalin, a major flavone from Scutellaria radix, on acetaminophen-induced liver injury in mice. Immunopharmacol Immunotoxicol 25(4):585–594PubMedCrossRefPubMedCentralGoogle Scholar
  52. Jelić D, Lower-Nedza AD, Brantner AH et al (2016) Baicalin and Baicalein inhibit Src tyrosine kinase and production of IL-6. J Chemother 2016:2510621.  https://doi.org/10.1155/2016/2510621CrossRefGoogle Scholar
  53. Jikku MJ, Binu T, Rajendra A et al (2015) Medicinal chasmophytes of Urumbikkara Hills, Idukki District, Kerala, India. AJPST 5(1):11–17Google Scholar
  54. Joshee N, Patrick TS, Mentreddy RS et al (2002) Skullcap: potential medicinal crop. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Virginia, pp 580–586Google Scholar
  55. Joshee N, Parajuli P, Medina-Bolivar F et al (2010) Scutellaria biotechnology: achievements and future prospects. Bull UASVM Hort 67(1):24–32Google Scholar
  56. Joshee N, Tascan A, Medina-Bolivar F et al (2013) Scutellaria: biotechnology, phytochemistry and its potential as a commercial medicinal crop. In: Chandra S, Lata H, Varma A (eds) Biotechnology for medicinal plants. Springer, Berlin, Heidelberg, pp 66–99Google Scholar
  57. Jung W, Kwon S, Cho S et al (2016) The effects of Chunghyul-Dan (a Korean medicine herbal complex) on cardiovascular and cerebrovascular diseases: a narrative review. J Evid Based Complement Altern Med 2016:2601740.  https://doi.org/10.1155/2016/2601740CrossRefGoogle Scholar
  58. Karnick CR (1996) Pharmacology of ayurvedic medicinal plants, Indian Medical Science Series, vol 47. Sri Satguru Publications, Delhi, IndiaGoogle Scholar
  59. Karuppusamy S (2007) Medicinal plants used by Paliyan tribes of Sirumalai hills of southern India. Nat Prod Rad 6(5):436–442Google Scholar
  60. Karuppusamy S (2009) A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J Med Plant Res 3(13):1222–1239Google Scholar
  61. Khoo B, Chua S, Balaram P (2010) Apoptotic effects of chrysin in human cancer cell lines. Int J Mol Sci 11(5):2188–2199PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kim KT, Jeon GH, Cho SH et al (2013) Effects of dietary inclusion of various concentrations of Scutellaria baicalensis Georgi extract on growth, body composition, serum chemistry and challenge test of far eastern catfish (Silurus asotus). Aquac Res 44:1502–1510CrossRefGoogle Scholar
  63. Konishi T, Minami M, Jiang Z et al (2016) Antibacterial activity of Shin’iseihaito (Xin Yi Qing Fei Tang) against Streptococcus pneumonia. Phcog J 8(1):20–23CrossRefGoogle Scholar
  64. Kosakowska O (2017) Intrapopulation variability of flavonoid content in roots of Baikal skullcap (Scutellaria baicalensis Georgi). Herba Pol 63(1):20–31CrossRefGoogle Scholar
  65. Króliczewska B, Graczyk S, Króliczewski J et al (2017) Investigation of the immune effects of Scutellaria baicalensis on blood leukocytes and selected organs of the chicken’s lymphatic system. J Anim Sci Biotechnol 8:22.  https://doi.org/10.1186/s40101-017-0152-xCrossRefPubMedPubMedCentralGoogle Scholar
  66. Ku S, Bae J (2014) Antithrombotic activities of wogonin and wogonoside via inhibiting platelet aggregation. Fitoterapia 98(2014):27–35PubMedCrossRefPubMedCentralGoogle Scholar
  67. Kunwar RM, Shrestha KP, Bussmann RW (2010) Traditional herbal medicine in Far-west Nepal: a pharmacological appraisal. J Ethnobiol Ethnomed 6:35.  https://doi.org/10.1186/1746-4269-6-35CrossRefPubMedPubMedCentralGoogle Scholar
  68. Lady Bird Johnson Wildflower Center (2017) Scutellaria drummondii. https://www.wildflower.org/plants/result.php?id_plant=scdr2. Accessed 14 Apr 2017
  69. Lahlou M (2013) The success of natural products in drug discovery. J Pharm Pharmacol 4:17–31CrossRefGoogle Scholar
  70. Lai M, Hsi S, Chen C et al (2002) Urinary pharmacokinetics of Baicalein, Wogonin and their glycosides after oral administration of scutellariae radix in humans. Biol Pharm Bull 26(1):79–83CrossRefGoogle Scholar
  71. Laishram S, Moirangthem D, Borah J et al (2015) Chrysin rich Scutellaria discolor Colebr. induces cervical cancer cell death via the induction of cell cycle arrest and caspase-dependent apoptosis. Life Sci 143:105–113PubMedCrossRefPubMedCentralGoogle Scholar
  72. Lee KJ, Jung PM, Oh Y et al (2014) Extraction and bioactivity analysis of major flavones compounds from Scutellaria baicalensis using in vitro assay and online screening HPLC-ABTS system. J Anal Methods Chem 2014:563702.  https://doi.org/10.1155/2014/563702CrossRefPubMedPubMedCentralGoogle Scholar
  73. Legends of America (2003) Native American Legends: Native American and Other Ancient Remedies. https://www.legendsofamerica.com/na-remedy/. Accessed 9 Sept 2017
  74. Li W, Sun H, Zhou J et al (2015a) Antibacterial activities, antioxidant contents and antioxidant properties of three traditional Chinese medicinal extracts. Bangladesh J Pharmacol 10:131–137Google Scholar
  75. Li X, Chen Y, Lai Y et al (2015b) Sustainable utilization of traditional chinese medicine resources: systematic evaluation on different production modes. J Evid Based Complement Altern Med 2015:218901.  https://doi.org/10.1155/2015/218901CrossRefGoogle Scholar
  76. Li Y, Tu M, Cheng C et al (2015c) Wogonoside induces apoptosis in Bel-7402, a hepatocellular carcinoma cell line, by regulating Bax/Bcl-1. Oncol Lett 10:1831–1835PubMedPubMedCentralCrossRefGoogle Scholar
  77. Li H, Hui H, Xu J et al (2015d) Wogonoside induces growth inhibition and cell cycle arrest via promoting the expression and binding activity of GATA-1 in chronic myelogenous leukemia cells. Arch Toxicol 90(6):1507–1522PubMedCrossRefPubMedCentralGoogle Scholar
  78. Lim BO (2003) Effects of wogonin, wogonoside, and 3,5,7,2′,6′-pentahydroxyflavone on chemical mediator production in peritoneal exduate cells and immunoglobulin E of rat mesenteric lymph node lymphocytes. J Ethnopharmacol 84(1):23–29PubMedCrossRefPubMedCentralGoogle Scholar
  79. Lin M, Liu L, Li C et al (2013) Scutellaria extract decreases the proportion of side population cells in a myeloma cell line by down-regulating the expression of ABCG2 protein. Asian Pac J Cancer Prev 14:7179–7186PubMedCrossRefPubMedCentralGoogle Scholar
  80. Liu WC, Pi SH, Kim IH (2016) Effects of Scutellaria baicalensis and Lonicera japonica extract mixture supplementation on growth performance, nutrient digestibility, blood profiles and meat quality in finishing pigs. Ital J Anim Sci 15(3):446–452CrossRefGoogle Scholar
  81. Lui I, Yans L, Wan Y et al (2002) Determination of Baicalin and Wogonoside in seven species of radix Scutellariae by RP–HPLC. Chin J Pharm Anal 22(2):99–102Google Scholar
  82. Mamadalieva NZ, Sharopov F, Satyal P et al (2016) Composition of the essential oils of three Uzbek Scutellaria species (Lamiaceae) and their antioxidant activities. Nat Prod Res 31(10):1172–1176.  https://doi.org/10.1080/14786419.2016.1222383CrossRefPubMedPubMedCentralGoogle Scholar
  83. Mamadalieva NZ, Akramov DK, Ovidi E et al (2017) Aromatic medicinal plants of the Lamiaceae Family from Uzbekistan: ethnopharmacology, essential oils composition, and biological activities. Medicine 4(1):8.  https://doi.org/10.3390/medicines4010008CrossRefGoogle Scholar
  84. Manandhar NP (1991) Medicinal plant-Lore of Tamang tribe of Kabhrepalanchok District. Nepal Econ Bot 45(1):58–71CrossRefGoogle Scholar
  85. Manandhar NP (2002) Plants and people of Nepal. Timber press Inc. Portland, Oregon, USA, p 599Google Scholar
  86. Marsh Z, Yang T, Nopo-Olazabal L et al (2014) Effects of light, methyl jasmonate and cyclodextrin on production of phenolic compounds in hairy root cultures of Scutellaria lateriflora. Phytochemistry 107:50–60PubMedCrossRefGoogle Scholar
  87. Marshall E and Chandrasekharan C (2009) Non-farm income from non-wood forest products. Diversification booklet number 12. Food and Agriculture Organization of the United Nations Rome (eds)Google Scholar
  88. Meng X, Ren G, Gao L et al (2016) Anti-fibrotic effect of wogonin in renal tubular epithelial cells via Smad3-dependent mechanisms. Eur J Pharmacol 789:134–143PubMedCrossRefGoogle Scholar
  89. Minami M, Konishi T, Takase H et al (2017) Effect of Shin’iseihaito (Xinyiqingfeitang) on acute streptococcus pneumonia murine sinusitis via macrophage activation. Evid Based Complement Alternat Med 2017:4293291.  https://doi.org/10.1155/2017/4293291CrossRefPubMedPubMedCentralGoogle Scholar
  90. Minareci E, Pekönür S (2017) An Important Euroasian Genus: Scutellaria L. Int J Sec Metabolite 4(1):35–46Google Scholar
  91. Miyaichi Y, Imoto Y, Kizu H et al (1988) Studies on the Nepalese crude drugs (X). On the flavonoid and the stilbene constituents of the leaves of Scutellaria scandens Buch.-Ham ex D. Don. Shoyakugaku Zasshi 42:204–207Google Scholar
  92. Moerman DE (1998) Native American ethnobotany. Portland, OregonGoogle Scholar
  93. Moerman DE (2009) Native American medicinal plants: an ethnobotanical dictionary. Portland, OregonGoogle Scholar
  94. Moon K, Byun J, Kim S et al (1995) Screening of natural preservatives to inhibit kimchi fermentation. Korean J Food Sci Technol 27(2):257–263Google Scholar
  95. Nabavi SF, Braidy N, Habtemariam S et al (2015) Neuroprotective effects of chrysin: from chemistry to medicine. Neurochem Int 90(2015):224–231PubMedCrossRefPubMedCentralGoogle Scholar
  96. Nagai A, Shibamoto Y, Ogawa K (2013) Therapeutic effects of Saireito (Chai-Ling-Tang), a traditional Japanese herbal medicine, on lymphedema caused by radiotherapy: a case series study. Evid Based Complement Alternat Med 2013:241629.  https://doi.org/10.1155/2013/241629CrossRefPubMedPubMedCentralGoogle Scholar
  97. Nikbin M, Kazemipour N, Maghsoodlou MT (2014) Mineral elements and essential oil contents of Scutellaria luteo-caerulea Bornm. & Snit. Avicenna J Phytomed 4(3):182–190PubMedPubMedCentralGoogle Scholar
  98. Olennikov DN, Chirikova NK (2013) Phenolic compounds and cinnamamide from Scutellaria scordiifolia. Chem Nat 49(1):124–126CrossRefGoogle Scholar
  99. Paton A (1990) A global taxonomic investigation of Scutellaria (Labiatae). Kew Bull 45(3):399–450CrossRefGoogle Scholar
  100. Paton A, Suddee S, Bongcheewin B (2016) Two new species of Scutellaria (Lamiaceae) from Thailand and Burma. Kew Bull 71:3CrossRefGoogle Scholar
  101. Patra JK, Das G, Paramithiotis S et al (2016) Kimchi and other widely consumed traditional fermented foods of Korea: a review. Front Microbiol 7:1493.  https://doi.org/10.3389/fmicb.2016.01493CrossRefPubMedPubMedCentralGoogle Scholar
  102. Payne T, Clement J, Arnold D et al (1999) Heterologous myb genes distinct from GL1 enhance trichome production when overexpressed in Nicotiana tabacum. Development 126:671–682PubMedGoogle Scholar
  103. Procházková D, Boušová I, Wilhelmová N (2011) Antioxidant and prooxidant properties of flavonoids. Fitoterapia 82(4):513–523PubMedCrossRefGoogle Scholar
  104. Qu G, Yue X, Li G et al (2010) Two new cytotoxic ent-clerodane diterpenoids from Scutellaria barbata. J Asian Nat Prod Res 12(10):859–864PubMedCrossRefGoogle Scholar
  105. Quattrocchi U (2012) CRC world dictionary of medicinal and poisonous plants: common names, scientific names, eponyms, synonyms, and etymology. CRC Press, Boca RatonCrossRefGoogle Scholar
  106. Rechinger KH (1982) Scutellaria L. In: Rechinger KH (ed) Flora Iranica, vol 150. Akademische Druck-u.-Verlagsanstalt, Graz, pp 44–84Google Scholar
  107. Salini S, Chubicka T, Sasidharan N et al (2013) Cytotoxic and antioxidant properties of selected Scutellaria species from the Western Ghats of peninsular India. Pharm Biol 51(2):152–159PubMedCrossRefPubMedCentralGoogle Scholar
  108. Saralamma V, Lee H, Hong G et al (2017) Korean Scutellaria baicalensis Georgi flavonoid extract induces mitochondrially mediated apoptosis in human gastric cancer AGS cells. Oncol Lett 14:607–614CrossRefGoogle Scholar
  109. Schilmiller AL, Last RL, Pichersky E (2008) Harnessing plant trichome biochemistry for the production of useful compounds. Plant J 54:702–711PubMedCrossRefPubMedCentralGoogle Scholar
  110. Shang X, He X, He X et al (2010) The genus Scutellaria an ethnopharmacological and phytochemical review. J Ethnopharmacol 128:279–313PubMedCrossRefPubMedCentralGoogle Scholar
  111. Shepard GH Jr (2004) A sensory ecology of medicinal plant therapy in two Amazonian societies. Am Anthropol 106(2):252–266CrossRefGoogle Scholar
  112. Shi Z, Li N, Shi Q et al (2015) Synthesis of scutellarein derivatives to increase biological activity and water solubility. Bioorg Med Chem 23:6875–6884PubMedCrossRefPubMedCentralGoogle Scholar
  113. Shih H, Yang L (2012) Relaxant effect induced by wogonin from Scutellaria baicalensis on rat isolated uterine smooth muscle. Pharm Biol 50(6):760–765PubMedCrossRefPubMedCentralGoogle Scholar
  114. Shih H, Hsu C, Yang L (2009) In vitro study of the tocolytic effect of oroxylin a from Scutellaria baicalensis root. J Biomed Sci 16:27PubMedPubMedCentralCrossRefGoogle Scholar
  115. Shim SH (2014) A new diterpenoid from aerial parts of Scutellaria barbata. Chem Nat Compounds 50:291–292CrossRefGoogle Scholar
  116. Shin HS, Bae MJ, Choi DW et al (2014) Skullcap (Scutellaria baicalensis) extract and its active compound, Wogonin, inhibit ovalbumin-induced Th2-mediated response. Molecules 19:2536–2545PubMedPubMedCentralCrossRefGoogle Scholar
  117. Shou-Zhong Y (1998) The Devine Farmer’s Materia Medica, A Translation of the Shen Nong Ben Cao Jing. Boulder, ColoradoGoogle Scholar
  118. Sidhu Y (2010) In vitro micropropagation of medicinal plants by tissue culture. Plymouth Student Scientist 4(1):432–449Google Scholar
  119. Sinha S, Pokhrel S, Vaidya BN et al (1999) In vitro micropropagation and callus induction in Scutellaria discolor Colebr.—A medicinally important plant of Nepal. 12(2):219–223Google Scholar
  120. Solecki RS, Shanidor IV (1975) A Neanderthal flower burial in northern Iraq. Science 190:880–881CrossRefGoogle Scholar
  121. Song X, Luo J, Fu D et al (2014) Traditional Chinese medicine prescriptions enhance growth performance of heat stressed beef cattle by relieving heat stress responses and increasing apparent nutrient digestibility. Asian Australas J Anim Sci 27(10):1513–1520PubMedPubMedCentralCrossRefGoogle Scholar
  122. Sripathi R, Ravi S (2017) Ethnopharmacology, phytoconstituents, essential oil composition and biological activities of the genus Scutellaria. J Pharm Sci Res 9(3):275–287Google Scholar
  123. Sun J, Chen P (2011) A flow-injection mass spectrometry fingerprinting method for authentication and quality assessment of Scutellaria lateriflora based dietary supplements. Anal Bioanal Chem 401(5):1577–1588PubMedCrossRefGoogle Scholar
  124. Suzuki H, Inadomi JM, Hibi T (2009) Japanese herbal medicine in functional gastrointestinal disorders. Neurogastroenterol Motil 21(7):688–696PubMedPubMedCentralCrossRefGoogle Scholar
  125. Świader K, Kowalczyk A, Matkowski A et al (2003) Chromatographic analysis of polyphenolic compounds in Scutellaria barbata D. Don Cultivated in Poland. Herba Pol 50(3/4):9–12Google Scholar
  126. Tai MC, Tsang SY, Chang LYF et al (2005) Therapeutic potential of Wogonin: a naturally occurring flavonoid. CNS Drug Rev 11(2):141–150PubMedCrossRefGoogle Scholar
  127. Takagi R, Kawano M, Nakagome K et al (2014) Wogonin attenuates ovalbumin antigen-induced neutrophilic airway inflammation by inhibiting Th17 differentiation. Int J Inf Secur 2014:571508.  https://doi.org/10.1155/2014/571508CrossRefGoogle Scholar
  128. Takano F, Ohta Y, Tanaka T et al (2009) Oral Administration of Ren-Shen-Yang-Rong-Tang ‘Ninjin’yoeito’ protects against hematotoxicity and induces immature erythroid progenitor cells in 5-fluorouracil-induced anemia. eCAM 6(2):247–256PubMedGoogle Scholar
  129. Takashi T, Uchida H, Suzuki T et al (2014) Effectiveness of Saikokaryukotsuboreito (herbal medicine) for antipsychotic-induced sexual dysfunction in male patients with schizophrenia: a description of two cases. Case Rep Psychiatry 2014:784671.  https://doi.org/10.1155/2014/784671CrossRefPubMedPubMedCentralGoogle Scholar
  130. Tinitana F, Rios M, Romero-Benavides JC et al (2016) Medicinal plants sold at traditional markets in southern Ecuador. J Ethnobiol Ethnomed.  https://doi.org/10.1186/s13002-016-0100-4
  131. Tomimori T, Miyaichi Y, Imoto Y et al (1985) Studies on Nepalese crude drugs. V. On the Flavonoid Constituents of the Root of Scutellaria discolor COLEBR. Chem Pharm Bull 33(10):4457–4463CrossRefGoogle Scholar
  132. Tsai C, Yeh W, Huang SM et al (2012) Wogonin induces reactive oxygen species production and cell apoptosis in human glioma cancer cells. Int J Mol Sci 13:9877–9892PubMedPubMedCentralCrossRefGoogle Scholar
  133. Uchi H, Tokunaga S, Mitoma C et al (2011) A clinical trial of Kampo formulae for the treatment of symptoms of Yusho, a poisoning caused by dioxins and related organochlorine compounds. Evid Based Complement Alternat Med 2011:589724.  https://doi.org/10.1093/ecam/nep209CrossRefPubMedPubMedCentralGoogle Scholar
  134. United States Department of Agriculture (2012) Natural resources conservation service. Plants profile for Scutellaria ocmulgee (Ocmulgee skullcap) Accessed 15 Apr 2012Google Scholar
  135. United States Department of Agriculture (2016) Scutellaria montana. https://plants.usda.gov/core/profile?symbol=SCMO6. Accessed 3 Mar 2016
  136. Upton R (2009) American herbal pharmacopoeia and therapeutic compendium: skullcap aerial parts. Scotts Valley, CA American Herbal PharmacopoeiaGoogle Scholar
  137. Vaidya B (2013) Antioxidant potential, conservation, and reproductive biology of medicinal Scutellaria. Dissertation, Fort Valley State UniversityGoogle Scholar
  138. Vaidya BN, Brearley TA, Joshee N (2013) Antioxidant capacity of fresh and dry leaf extracts of sixteen Scutellaria species. J Med Active Plants 2(3):42–49Google Scholar
  139. Valarezo E, Castillo A, Guaya D et al (2012) Chemical composition of essential oils of two species of the Lamiaceae family: Scutellaria volubilis and Lepechinia paniculata from Loja, Ecuador. J Essent Iol Res 24(1):31–31CrossRefGoogle Scholar
  140. van Loon IM (1998) The Golden root: clinical applications of Scutellaria baicalensis Georgi flavonoids as modulators of the inflammatory responses. Altern Med Rev 3(1):472–480Google Scholar
  141. Vanisree M, Lee CY, Lo SF et al (2004) Studies on the production of some important secondary metabolites from medicinal plants by plant tissue cultures. Bot Bull Acad Sin 45(1):1–22Google Scholar
  142. Varmuzova K, Matulova ME, Gerzova L et al (2015) Curcuma and Scutellaria plant extracts protect chickens against inflammation and Salmonella enteritidis infection. Poult Sci 94:2049–2058PubMedCrossRefPubMedCentralGoogle Scholar
  143. Wang Q, Liao X, Xiang C et al (2017) A practical synthesis of the flavone, scutellarein. J Chem Res 41(3):157–159CrossRefGoogle Scholar
  144. Wills RBH, Stuart DL (2004) Generation of high quality Australian skullcap products. A Report for the Rural Industries Research and Development Corporation. Australian Government. RIRDC publication No. 04/020Google Scholar
  145. Xiang C-L, Dong Z-H, Peng H et al (2009) Trichome micromorphology of the East Asiatic genus Chelonopsis (Lamiaceae) and its systematic implications. Flora:434–441Google Scholar
  146. Xing J, You H, Dong Y et al (2011) Metabolic and pharmacokinetic studies of scutellarin in rat plasma, urine, and feces. Acta Pharmacol Sin 32:655–663.  https://doi.org/10.1038/aps.2011.11CrossRefPubMedPubMedCentralGoogle Scholar
  147. Yamakawa J, Motoo Y, Moriya J et al (2013) Significance of Kampo, traditional Japanese medicine, in supportive care of cancer patients. Evid Based Complement Alternat Med 2013:746486.  https://doi.org/10.1155/2013/746486CrossRefPubMedPubMedCentralGoogle Scholar
  148. Yang Y, Tang Y, Lui Y (2013) Wogonoside displays anti-inflammatory effects through modulating inflammatory mediator expression using RAW264.7 cells. J Ethnopharmacol 148(2013):271–276PubMedCrossRefPubMedCentralGoogle Scholar
  149. Yang J, Wu X, Yu H et al (2014) NMDA receptor-mediated neuroprotective effect of the Scutellaria baicalensis Georgi extract on the Excitotoxic neuronal cell death in primary rat cortical cell cultures. Sci World J 2014:459549.  https://doi.org/10.1155/2014/459549CrossRefGoogle Scholar
  150. Yimam M, Brownell L, Hodges M et al (2012) Analgesic effects of a standardized bioflavonoid composition from Scutellaria baicalensis and Acacia catechu. J Diet Suppl 9(3):155–165PubMedPubMedCentralCrossRefGoogle Scholar
  151. Yuan Q, Zhang Z, Hu J et al (2010) Impacts of recent cultivation on genetic diversity pattern of a medicinal plant, Scutellaria baicalensis (Lamiaceae). BMC Genet 11:29PubMedPubMedCentralCrossRefGoogle Scholar
  152. Yuldasheva NK, Ul’chenko NT, Mamadalieva N et al (2014) Lipids from the aerial part of Scutellaria ramosissima. Chem Nat 50(1):68–71CrossRefGoogle Scholar
  153. Zhang Z, Lian X, Li S et al (2008) Characterization of chemical ingredients and anticonvulsant activity of American skullcap (Scutellaria lateriflora). Phytomedicine 16:485–493PubMedCrossRefGoogle Scholar
  154. Zhang J, Park H, Kim J et al (2014) Flavonoids identified from Korean Scutellaria baicalensis induce apoptosis by ROS generation and caspase activation on human Fibrosarcoma cells. Am J Chin Med 42(2):465–483PubMedCrossRefGoogle Scholar
  155. Zhao Q, Chen X, Martin C (2016) Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants. Sci Bull 61(18):1391–1398CrossRefGoogle Scholar
  156. Zhu M, Rajamani S, Kaylor J et al (2004) The flavonoid Baicalein inhibits fibrillation of -Synuclein and disaggregates existing fibrils. J Biol Chem 279(26):26846–26857PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lani Irvin
    • 1
    • 2
  • Carissa Jackson
    • 1
  • Aisha L. Hill
    • 3
  • Richa Bajaj
    • 1
  • Chonour Mahmoudi
    • 4
  • Brajesh N. Vaidya
    • 1
  • Nirmal Joshee
    • 1
    Email author
  1. 1.Agricultural Research Station, College of Agriculture, Family Sciences and TechnologyFort Valley State UniversityFort ValleyUSA
  2. 2.Department of Natural SciencesMiddle Georgia State UniversityMaconUSA
  3. 3.School of Medicine, Department of ImmunologyEmory UniversityAtlantaUSA
  4. 4.Department of Biology, Herbarium DivisionBu-Ali-Sina UniversityHamedanIran

Personalised recommendations