Advertisement

Nanoparticles for Cornea Therapeutic Applications: Treating Herpes Simplex Viral Infections

  • Fiona Simpson
  • François-Xavier Gueriot
  • Isabelle Brunette
  • May GriffithEmail author
Chapter

Abstract

Herpes Simplex Virus-1 (HSV-1) infections in the eye often originate in the cornea before assuming a latent state in the trigeminal ganglion. During primary infection and upon injury or reactivation, HSV-1 can lead to significant corneal damage. Nanoparticles (NPs) are an emerging strategy for drug delivery to the cornea because they improve the long-term release of anti-HSV-1 drugs, such as nucleoside analogues. Acyclovir, ganciclovir, and valacyclovir have been successfully delivered using both polymer and lipid-based NPs in vitro. Solid silica dioxide NPs have been used to deliver the cathelicidin, LL-37, which prevented HSV-1 infection in corneal epithelial cells. Iron oxide nanoparticles have also been adapted to deliver an anti-HSV-1 DNA vaccine that successfully reduced corneal opacity and HSV-1 markers in a mouse model. Overall, NPs show promise as a delivery method for anti-HSV-1 strategies.

Notes

Acknowledgements

The authors have no conflict of interest. FS is supported by a FRQNT PhD studentship. FXG is supported by a (Berthe Fouassier) France Foundation studentship. MG holds the Caroline Durand Foundation Research Chair for Cellular Therapy of Diseases of the Eye, Université de Montréal.

Disclosure

All authors have read and approved the final version.

References

  1. 1.
    Agarwal P, Rupenthal ID. In vitro and ex vivo corneal penetration and absorption models. Drug Deliv Transl Res. 2016;6(6):634–47.CrossRefGoogle Scholar
  2. 2.
    Reimondez-Troitino S, Csaba N, Alonso MJ, de la Fuente M. Nanotherapies for the treatment of ocular diseases. Eur J Pharm Biopharm. 2015;95(Pt B):279–93.CrossRefGoogle Scholar
  3. 3.
    Sharma A, Taniguchi J. Review: Emerging strategies for antimicrobial drug delivery to the ocular surface: implications for infectious keratitis. Ocul Surf. 2017;15(4):670–9.CrossRefGoogle Scholar
  4. 4.
    Gaudana R, Jwala J, Boddu SH, Mitra AK. Recent perspectives in ocular drug delivery. Pharm Res. 2009;26(5):1197–216.CrossRefGoogle Scholar
  5. 5.
    Farooq AV, Shukla D. Herpes simplex epithelial and stromal keratitis: an epidemiologic update. Surv Ophthalmol. 2012;57(5):448–62.CrossRefGoogle Scholar
  6. 6.
    Liesegang TJ, Melton LJ III, Daly PJ, Ilstrup DM. Epidemiology of ocular herpes simplex. Incidence in Rochester, Minn, 1950 through 1982. Arch Ophthalmol. 1950;107(8):1155–9.CrossRefGoogle Scholar
  7. 7.
    Kennedy DP, Clement C, Arceneaux RL, Bhattacharjee PS, Huq TS, Hill JM. Ocular herpes simplex virus type 1: is the cornea a reservoir for viral latency or a fast pit stop? Cornea. 2011;30(3):251–9.CrossRefGoogle Scholar
  8. 8.
    Al-Dujaili LJ, Clerkin PP, Clement C, McFerrin HE, Bhattacharjee PS, Varnell ED, Kaufman HE, Hill JM. Ocular herpes simplex virus: how are latency, reactivation, recurrent disease and therapy interrelated? Future Microbiol. 2011;6(8):877–907.CrossRefGoogle Scholar
  9. 9.
    Liedtke W, Opalka B, Zimmermann CW, Lignitz E. Age distribution of latent herpes simplex virus 1 and varicella-zoster virus genome in human nervous tissue. J Neurol Sci. 1993;116(1):6–11.CrossRefGoogle Scholar
  10. 10.
    Labetoulle M, Auquier P, Conrad H, Crochard A, Daniloski M, Bouee S, El Hasnaoui A, Colin J. Incidence of herpes simplex virus keratitis in France. Ophthalmology. 2005;112(5):888–95.CrossRefGoogle Scholar
  11. 11.
    Fry M, Aravena C, Yu F, Kattan J, Aldave AJ. Long-term outcomes of the Boston type I keratoprosthesis in eyes with previous herpes simplex virus keratitis. Br J Ophthalmol. 2018;102(1):48–53.CrossRefGoogle Scholar
  12. 12.
    De Clercq E, Holy A. Acyclic nucleoside phosphonates: a key class of antiviral drugs. Nat Rev Drug Discov. 2005;4(11):928–40.CrossRefGoogle Scholar
  13. 13.
    Sanchez-Lopez E, Espina M, Doktorovova S, Souto EB, Garcia ML. Lipid nanoparticles (SLN, NLC): overcoming the anatomical and physiological barriers of the eye—Part II—Ocular drug-loaded lipid nanoparticles. Eur J Pharm Biopharm. 2017;110:58–69.CrossRefGoogle Scholar
  14. 14.
    Hughes PM, Olejnik O, Chang-Lin JE, Wilson CG. Topical and systemic drug delivery to the posterior segments. Adv Drug Deliv Rev. 2005;57(14):2010–32.CrossRefGoogle Scholar
  15. 15.
    Norley SG, Huang L, Rouse BT. Targeting of drug loaded immunoliposomes to herpes simplex virus infected corneal cells: an effective means of inhibiting virus replication in vitro. J Immunol. 1986;136(2):681–5.Google Scholar
  16. 16.
    Norley SG, Sendele D, Huang L, Rouse BT. Inhibition of herpes simplex virus replication in the mouse cornea by drug containing immunoliposomes. Invest Ophthalmol Vis Sci. 1987;28(3):591–5.Google Scholar
  17. 17.
    Fresta M, Panico AM, Bucolo C, Giannavola C, Puglisi G. Characterization and in-vivo ocular absorption of liposome-encapsulated acyclovir. J Pharm Pharmacol. 1999;51(5):565–76.CrossRefGoogle Scholar
  18. 18.
    Law SL, Huang KJ, Chiang CH. Acyclovir-containing liposomes for potential ocular delivery. Corneal penetration and absorption. J Control Release. 2000;63(1–2):135–40.CrossRefGoogle Scholar
  19. 19.
    Genta I, Conti B, Perugini P, Pavanetto F, Spadaro A, Puglisi G. Bioadhesive microspheres for ophthalmic administration of acyclovir. J Pharm Pharmacol. 1997;49(8):737–42.CrossRefGoogle Scholar
  20. 20.
    Giannavola C, Bucolo C, Maltese A, Paolino D, Vandelli MA, Puglisi G, Lee VH, Fresta M. Influence of preparation conditions on acyclovir-loaded poly-d, l-lactic acid nanospheres and effect of PEG coating on ocular drug bioavailability. Pharm Res. 2003;20(4):584–90.CrossRefGoogle Scholar
  21. 21.
    Jwala J, Boddu SH, Shah S, Sirimulla S, Pal D, Mitra AK. Ocular sustained release nanoparticles containing stereoisomeric dipeptide prodrugs of acyclovir. J Ocul Pharmacol Ther. 2011;27(2):163–72.CrossRefGoogle Scholar
  22. 22.
    Makadia HK, Siegel SJ. Poly Lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 2011;3(3):1377–97.CrossRefGoogle Scholar
  23. 23.
    Yang X, Shah SJ, Wang Z, Agrahari V, Pal D, Mitra AK. Nanoparticle-based topical ophthalmic formulation for sustained release of stereoisomeric dipeptide prodrugs of ganciclovir. Drug Deliv. 2016;23(7):2399–409.Google Scholar
  24. 24.
    Yang X, Sheng Y, Ray A, Shah SJ, Trinh HM, Pal D, Mitra AK. Uptake and bioconversion of stereoisomeric dipeptide prodrugs of ganciclovir by nanoparticulate carriers in corneal epithelial cells. Drug Deliv. 2016;23(7):2532–40.Google Scholar
  25. 25.
    Calderon L, Harris R, Cordoba-Diaz M, Elorza M, Elorza B, Lenoir J, Adriaens E, Remon JP, Heras A, Cordoba-Diaz D. Nano and microparticulate chitosan-based systems for antiviral topical delivery. Eur J Pharm Sci. 2013;48(1–2):216–22.CrossRefGoogle Scholar
  26. 26.
    Ramyadevi D, Sandhya P. Dual sustained release delivery system for multiple route therapy of an antiviral drug. Drug Deliv. 2014;21(4):276–92.CrossRefGoogle Scholar
  27. 27.
    Stella B, Arpicco S, Rocco F, Burgalassi S, Nicosia N, Tampucci S, Chetoni P, Cattel L. Nonpolymeric nanoassemblies for ocular administration of acyclovir: pharmacokinetic evaluation in rabbits. Eur J Pharm Biopharm. 2012;80(1):39–45.CrossRefGoogle Scholar
  28. 28.
    Seyfoddin A, Al-Kassas R. Development of solid lipid nanoparticles and nanostructured lipid carriers for improving ocular delivery of acyclovir. Drug Dev Ind Pharm. 2013;39(4):508–19.CrossRefGoogle Scholar
  29. 29.
    Kumar R, Sinha VR. Lipid nanocarrier: an efficient approach towards ocular delivery of hydrophilic drug (valacyclovir). AAPS Pharm Sci Tech. 2017;18(3):884–94.CrossRefGoogle Scholar
  30. 30.
    Gordon YJ, Huang LC, Romanowski EG, Yates KA, Proske RJ, McDermott AM. Human cathelicidin (LL-37), a multifunctional peptide, is expressed by ocular surface epithelia and has potent antibacterial and antiviral activity. Curr Eye Res. 2005;30(5):385–94.CrossRefGoogle Scholar
  31. 31.
    Bultmann H, Busse JS, Brandt CR. Modified FGF4 signal peptide inhibits entry of herpes simplex virus type 1. J Virol. 2001;75(6):2634–45.CrossRefGoogle Scholar
  32. 32.
    Lee CJ, Buznyk O, Kuffova L, Rajendran V, Forrester JV, Phopase J, Islam MM, Skog M, Ahlqvist J, Griffith M. Cathelicidin LL-37 and HSV-1 corneal infection: peptide versus gene therapy. Transl Vis Sci Technol. 2014;3(3):4.CrossRefGoogle Scholar
  33. 33.
    Johnston C, Gottlieb SL, Wald A. Status of vaccine research and development of vaccines for herpes simplex virus. Vaccine. 2016;34(26):2948–52.CrossRefGoogle Scholar
  34. 34.
    Hu K, Dou J, Yu F, He X, Yuan X, Wang Y, Liu C, Gu N. An ocular mucosal administration of nanoparticles containing DNA vaccine pRSC-gD-IL-21 confers protection against mucosal challenge with herpes simplex virus type 1 in mice. Vaccine. 2011;29(7):1455–62.CrossRefGoogle Scholar
  35. 35.
    Piret J, Boivin G. Antiviral resistance in herpes simplex virus and varicella-zoster virus infections: diagnosis and management. Curr Opin Infect Dis. 2016;29(6):654–62.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Fiona Simpson
    • 1
    • 2
    • 3
  • François-Xavier Gueriot
    • 4
  • Isabelle Brunette
    • 1
    • 3
  • May Griffith
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Ophthalmology, Faculty of MedicineUniversité de MontréalMontréalCanada
  2. 2.Faculty of Medicine, Institute of Biomedical EngineeringUniversité de MontréalMontréalCanada
  3. 3.Centre de RechercheHôpital Maisonneuve-RosemontMontréalCanada
  4. 4.Department of OphthalmologyGrenoble Alpes UniversityLa Tronche, GrenobleFrance

Personalised recommendations