Nanomaterials for Engineering the Treatment of Skin Wounds

  • Manuel Ahumada
  • Ying Wang
  • Walfre FrancoEmail author


The skin is the largest organ in the human body; however, it is only a few millimeters thick. Among the main functions of the skin are to serve as a barrier for protection against physical and biological insults, as a thermal regulator to control internal temperatures, and as a sensor of physical stimulus that could lead to pleasant or harmful experiences. This highly-integrated sensory and regulatory armor is also capable of self-repair in response to injury, albeit the quality and extent of healing are determined by the skin condition and the type and size of the wound. In general, the wound healing process of skin comprehends four stages, which are hemostasis, inflammation, proliferation, and remodeling. These stages can be affected by internal physiological conditions and external environmental factors compromising the healing of the wound, for example, chronic wounds and bacterial infections. This chapter opens with an overview of the physiology of skin and skin wound healing. This overview is followed by a review of nanomaterial technologies and methods that have been investigated for the treatment of skin wounds. The chapter ends with an outlook of nanotechnology strategies for improving the treatment of skin wounds.



We would like to thank Dr. Rox R. Anderson for his support. All authors have read and approved this final version. Dr. Ahumada acknowledges the support of CONICYT-FONDECYT Iniciación (grant #11180616). Illustrating support was provided by Yanjie Jack Guo.


All authors have read and approved this final version.


  1. 1.
    Watt FM. Mammalian skin cell biology: at the interface between laboratory and clinic. Science. 2014;346(6212):937–40.CrossRefGoogle Scholar
  2. 2.
    Sun BK, Siprashvili Z, Khavari PA. Advances in skin grafting and treatment of cutaneous wounds. Science. 2014;346(6212):941–5.CrossRefGoogle Scholar
  3. 3.
    Schepeler T, Page ME, Jensen KB. Heterogeneity and plasticity of epidermal stem cells. Development. 2014;141(13):2559–67.CrossRefGoogle Scholar
  4. 4.
    Belkaid Y, Segre JA. Dialogue between skin microbiota and immunity. Science. 2014;346(6212):954–9.CrossRefGoogle Scholar
  5. 5.
    Lo JA, Fisher DE. The melanoma revolution: from UV carcinogenesis to a new era in therapeutics. Science. 2014;346(6212):945–9.CrossRefGoogle Scholar
  6. 6.
    Zimmerman A, Bai L, Ginty DD. The gentle touch receptors of mammalian skin. Science. 2014;346(6212):950–4.CrossRefGoogle Scholar
  7. 7.
    Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453(7193):314–21.CrossRefGoogle Scholar
  8. 8.
    Clark RAF. Fibrin and wound healing. In: Nieuwenhuizen W, Mosesson MW, DeMaat MPM, editors. Fibrinogen, vol. 936. Annals of the New York Academy of Sciences; 2001. p. 355–67.Google Scholar
  9. 9.
    Ross R, Odland G. Human wound repair: II. Inflammatory cells epithelial-mesenchymal interrelations and fibrogenesis. J Cell Biol. 1968;39(1):152–68.CrossRefGoogle Scholar
  10. 10.
    Koh TJ, DiPietro LA. Inflammation and wound healing: the role of the macrophage. Expert Rev Mol Med. 2011;13:e23.CrossRefGoogle Scholar
  11. 11.
    Blanpain C, Fuchs E. Stem cell plasticity. Plasticity of epithelial stem cells in tissue regeneration. Science. 2014;344(6189):1243.CrossRefGoogle Scholar
  12. 12.
    Ito M, Liu YP, Yang ZX, Nguyen J, Liang F, Morris RJ, Cotsarelis G. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med. 2005;11(12):1351–4.CrossRefGoogle Scholar
  13. 13.
    Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. 2002;3(5):349–63.CrossRefGoogle Scholar
  14. 14.
    Levenson SM, Geever EF, Crowley LV, Oates JF, Berard CW, Rosen H. Healing of rat skin wounds. Ann Surg. 1965;161(2):293.CrossRefGoogle Scholar
  15. 15.
    Gill SE, Parks WC. Metalloproteinases and their inhibitors: regulators of wound healing. Int J Biochem Cell Biol. 2008;40(6–7):1334–47.CrossRefGoogle Scholar
  16. 16.
    Tocco I, Zavan B, Bassetto F, Vindigni V. Nanotechnology-based therapies for skin wound regeneration. J Nanomater. 2012;11.Google Scholar
  17. 17.
    Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine. 2013;9(1):1–14.CrossRefGoogle Scholar
  18. 18.
    Ryan SM, Brayden DJ. Progress in the delivery of nanoparticle constructs: towards clinical translation. Curr Opin Pharmacol. 2014;18:120–8.CrossRefGoogle Scholar
  19. 19.
    Athar M, Das AJ. Therapeutic nanoparticles: State-of-the-art of nanomedicine. Adv Mater Rev. 2014;1(1):25–37.Google Scholar
  20. 20.
    Cortivo R, Vindigni V, Iacobellis L, Abatangelo G, Pinton P, Zavan B. Nanoscale particle therapies for wounds and ulcers. Nanomedicine. 2010;5(4):641–56.CrossRefGoogle Scholar
  21. 21.
    Obregon R, Ramon-Azcon J, Ahadian S, Shiku H, Bae H, Ramalingam M, Matsue T. The use of microtechnology and nanotechnology in fabricating vascularized tissues. J Nanosci Nanotechnol. 2014;14(1):487–500.CrossRefGoogle Scholar
  22. 22.
    Zhang LJ, Webster TJ. Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today. 2009;4(1):66–80.CrossRefGoogle Scholar
  23. 23.
    Chakrabarti S, Chattopadhyay P, Islam J, Ray S, Raju PS, Mazumder B. Aspects of nanomaterials in wound healing. Curr Drug Deliv. 2019;16(1):26–41.CrossRefGoogle Scholar
  24. 24.
    Kalashnikova I, Das S, Seal S. Nanomaterials for wound healing: scope and advancement. Nanomedicine. 2015;10(16):2593–612.CrossRefGoogle Scholar
  25. 25.
    Mordorski B, Prow T. Nanomaterials for wound healing. Curr Dermatol Rep. 2016;5(4):278–86.CrossRefGoogle Scholar
  26. 26.
    Zhang YB, Petibone D, Xu Y, Mahmood M, Karmakar A, Casciano D, Ali S, Biris AS. Toxicity and efficacy of carbon nanotubes and graphene: the utility of carbon-based nanoparticles in nanomedicine. Drug Metab Rev. 2014;46(2):232–46.CrossRefGoogle Scholar
  27. 27.
    Zhou Z. Liposome formulation of fullerene-based molecular diagnostic and therapeutic agents. Pharmaceutics. 2013;5(4):525–41.CrossRefGoogle Scholar
  28. 28.
    Lu Z, Dai T, Huang L, Kurup DB, Tegos GP, Jahnke A, Wharton T, Hamblin MR. Photodynamic therapy with a cationic functionalized fullerene rescues mice from fatal wound infections. Nanomedicine. 2010;5(10):1525–33.CrossRefGoogle Scholar
  29. 29.
    Gao J, Wang HL, Iyer R. Suppression of proinflammatory cytokines in functionalized fullerene-exposed dermal keratinocytes. J Nanomater. 2010.Google Scholar
  30. 30.
    Ryoo SR, Kim YK, Kim MH, Min DH. Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion, and gene transfection studies. ACS Nano. 2010;4(11):6587–98.CrossRefGoogle Scholar
  31. 31.
    Zhang YY, Wang B, Meng XA, Sun GQ, Gao CY. Influences of acid-treated multiwalled carbon nanotubes on fibroblasts: proliferation, adhesion, migration, and wound healing. Ann Biomed Eng. 2011;39(1):414–26.CrossRefGoogle Scholar
  32. 32.
    Kawai K, Larson BJ, Ishise H, Carre AL, Nishimoto S, Longaker M, Lorenz HP. Calcium-based nanoparticles accelerate skin wound healing. PLOS One. 2011;6(11).CrossRefGoogle Scholar
  33. 33.
    Schneider LA, Korber A, Grabbe S, Dissemond J. Influence of pH on wound-healing: a new perspective for wound-therapy? Arch Dermatol Res. 2007;298(9):413–20.CrossRefGoogle Scholar
  34. 34.
    Blecher K, Martinez LR, Tuckman-Vernon C, Nacharaju P, Schairer D, Chouake J, Friedman JM, Alfieri A, Guha C, Nosanchuk JD and others. Nitric oxide-releasing nanoparticles accelerate wound healing in NOD-SCID mice. Nanomedicine. 2012;8(8):1364–71.CrossRefGoogle Scholar
  35. 35.
    Han G, Nguyen LN, Macherla C, Chi YL, Friedman JM, Nosanchuk JD, Martinez LR. Nitric oxide-releasing nanoparticles accelerate wound healing by promoting fibroblast migration and collagen deposition. Am J Pathol. 2012;180(4):1465–73.CrossRefGoogle Scholar
  36. 36.
    Hurwitz ZM, Ignotz R, Lalikos JF, Galili U. Accelerated porcine wound healing after treatment with alpha-gal nanoparticles. Plast Reconstr Surg. 2012;129(2):242E–51E.CrossRefGoogle Scholar
  37. 37.
    Wigglesworth KM, Racki WJ, Mishra R, Szomolanyi-Tsuda E, Greiner DL, Galili U. Rapid recruitment and activation of macrophages by anti-gal/alpha-gal liposome interaction accelerates wound healing. J Immunol. 2011;186(7):4422–32.CrossRefGoogle Scholar
  38. 38.
    Castangia I, Nacher A, Caddeo C, Valenti D, Fadda AM, Diez-Sales O, Ruiz-Sauri A, Manconi M. Fabrication of quercetin and curcumin bionanovesicles for the prevention and rapid regeneration of full-thickness skin defects on mice. Acta Biomater. 2014;10(3):1292–300.CrossRefGoogle Scholar
  39. 39.
    Plock JA, Rafatmehr N, Sinovcic D, Schnider J, Sakai H, Tsuchida E, Banic A, Erni D. Hemoglobin vesicles improve wound healing and tissue survival in critically ischemic skin in mice. Am J Physiol Heart Circ Physiol. 2009;297(3):H905–10.CrossRefGoogle Scholar
  40. 40.
    Fukui T, Kawaguchi AT, Takekoshi S, Miyasaka M, Tanaka R. Liposome-encapsulated hemoglobin accelerates skin wound healing in mice. Artif Organs. 2012;36(2):161–9.CrossRefGoogle Scholar
  41. 41.
    Wang JP, Wan R, Mo YQ, Li M, Zhang QW, Chien SF. Intracellular delivery of adenosine triphosphate enhanced healing process in full-thickness skin wounds in diabetic rabbits. Am J Surg. 2010;199(6):823–32.CrossRefGoogle Scholar
  42. 42.
    Gainza G, Pastor M, Aguirre JJ, Villullas S, Pedraz JL, Hernandez RM, Igartua M. A novel strategy for the treatment of chronic wounds based on the topical administration of rhEGF-loaded lipid nanoparticles: In vitro bioactivity and in vivo effectiveness in healing-impaired db/db mice. J Control Release. 2014;185:51–61.CrossRefGoogle Scholar
  43. 43.
    Meddahi-Pelle A, Legrand A, Marcellan A, Louedec L, Letourneur D, Leibler L. Organ repair, hemostasis, and in vivo bonding of medical devices by aqueous solutions of nanoparticles. Angew Chem. 2014;53(25):6369–73.CrossRefGoogle Scholar
  44. 44.
    Baino F, Hamzehlou S, Kargozar S. Bioactive glasses: where are we and where are we going? J Funct Biomat. 2018;9(1).CrossRefGoogle Scholar
  45. 45.
    Lin C, Mao C, Zhang JJ, Li YL, Chen XF. Healing effect of bioactive glass ointment on full-thickness skin wounds. Biomed Mat. 2012;7(4).CrossRefGoogle Scholar
  46. 46.
    Eckhardt S, Brunetto PS, Gagnon J, Priebe M, Giese B, Fromm KM. Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. Chem Rev. 2013;113(7):4708–54.CrossRefGoogle Scholar
  47. 47.
    Alarcon EI, Griffith M, Udekwu KI. Silver nanoparticle applications. New York: Springer; 2015.Google Scholar
  48. 48.
    Lara HH, Garza-Trevino EN, Ixtepan-Turrent L, Singh DK. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnol. 2011;9.CrossRefGoogle Scholar
  49. 49.
    Xiu ZM, Ma J, Alvarez PJJ. Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol. 2011;45(20):9003–8.CrossRefGoogle Scholar
  50. 50.
    Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJJ. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012;12(8):4271–5.CrossRefGoogle Scholar
  51. 51.
    Ahumada M, McLaughlin S, Pacioni NL, Alarcon EI. Spherical silver nanoparticles in the detection of thermally denatured collagens. Anal Bioanal Chem. 2016;408(8):1993–6.CrossRefGoogle Scholar
  52. 52.
    Alarcon EI, Udekwu K, Skog M, Pacioni NL, Stamplecoskie KG, Gonzalez-Bejar M, Polisetti N, Wickham A, Richter-Dahlfors A, Griffith M and others. The biocompatibility and antibacterial properties of collagen-stabilized, photochemically prepared silver nanoparticles. Biomaterials. 2012;33(19):4947–56.CrossRefGoogle Scholar
  53. 53.
    Alarcon EI, Udekwu KI, Noel CW, Gagnon LBP, Taylor PK, Vulesevic B, Simpson MJ, Gkotzis S, Islam MM, Lee CJ and others. Safety and efficacy of composite collagen-silver nanoparticle hydrogels as tissue engineering scaffolds. Nanoscale. 2015;7(44):18789–98.CrossRefGoogle Scholar
  54. 54.
    Poblete H, Agarwal A, Thomas SS, Bohne C, Ravichandran R, Phospase J, Comer J, Alarcon EI. New insights into peptide-silver nanoparticle interaction: deciphering the role of cysteine and lysine in the peptide sequence. Langmuir. 2016;32(1):265–73.CrossRefGoogle Scholar
  55. 55.
    Pokhrel LR, Dubey B, Scheuerman PR. Impacts of select organic ligands on the colloidal stability, dissolution dynamics, and toxicity of silver nanoparticles. Environ Sci Technol. 2013;47(22):12877–85.CrossRefGoogle Scholar
  56. 56.
    Seitz F, Rosenfeldt RR, Storm K, Metreveli G, Schaumann GE, Schulz R, Bundschuh M. Effects of silver nanoparticle properties, media pH and dissolved organic matter on toxicity to daphnia magna. Ecotoxicol Environ Saf. 2015;111:263–70.CrossRefGoogle Scholar
  57. 57.
    Sharma VK, Siskova KM, Zboril R, Gardea-Torresdey JL. Organic-coated silver nanoparticles in biological and environmental conditions: fate, stability and toxicity. Adv Colloid Interface Sci. 2014;204:15–34.CrossRefGoogle Scholar
  58. 58.
    Vignoni M, Weerasekera HDA, Simpson MJ, Phopase J, Mah TF, Griffith M, Alarcon EI, Scaiano JC. LL37 peptide@silver nanoparticles: combining the best of the two worlds for skin infection control. Nanoscale. 2014;6(11):5725–8.CrossRefGoogle Scholar
  59. 59.
    Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B. 2008;112(43):13608–19.CrossRefGoogle Scholar
  60. 60.
    Kwan KHL, Liu XL, To MKT, Yeung KWK, Ho CM, Wong KKY. Modulation of collagen alignment by silver nanoparticles results in better mechanical properties in wound healing. Nanomedicine. 2011;7(4):497–504.CrossRefGoogle Scholar
  61. 61.
    Mishra M, Kumar H, Tripathi K. Diabetic delayed wound healing and the role of silver nanoparticles. Dig J Nanomater Bios. 2008;3(2):49–54.Google Scholar
  62. 62.
    Alarcon EI, Vulesevic B, Argawal A, Ross A, Bejjani P, Podrebarac J, Ravichandran R, Phopase J, Suuronen EJ, Griffith M. Coloured cornea replacements with anti-infective properties: expanding the safe use of silver nanoparticles in regenerative medicine. Nanoscale. 2016;8(12):6484–9.CrossRefGoogle Scholar
  63. 63.
    Dong RH, Jia YX, Qin CC, Zhan L, Yan X, Cui L, Zhou Y, Jiang XY, Long YZ. In situ deposition of a personalized nanofibrous dressing via a handy electrospinning device for skin wound care. Nanoscale. 2016;8(6):3482–8.CrossRefGoogle Scholar
  64. 64.
    Ziv-Polat O, Topaz M, Brosh T, Margel S. Enhancement of incisional wound healing by thrombin conjugated iron oxide nanoparticles. Biomaterials. 2010;31(4):741–7.CrossRefGoogle Scholar
  65. 65.
    Trickler WJ, Lantz SM, Schrand AM, Robinson BL, Newport GD, Schlager JJ, Paule MG, Slikker W, Biris AS, Hussain SM and others. Effects of copper nanoparticles on rat cerebral microvessel endothelial cells. Nanomedicine. 2012;7(6):835–46.CrossRefGoogle Scholar
  66. 66.
    Chen WY, Chang HY, Lu JK, Huang YC, Harroun SG, Tseng YT, Li YJ, Huang CC, Chang HT. Self-assembly of antimicrobial peptides on gold nanodots: against multidrug-resistant bacteria and wound-healing application. Adv Funct Mater. 2015;25(46):7189–99.CrossRefGoogle Scholar
  67. 67.
    Chigurupati S, Mughal MR, Okun E, Das S, Kumar A, McCaffery M, Seal S, Mattson MP. Effects of cerium oxide nanoparticles on the growth of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound healing. Biomaterials. 2013;34(9):2194–201.CrossRefGoogle Scholar
  68. 68.
    Das S, Baker AB. Biomaterials and nanotherapeutics for enhancing skin wound healing. Front Bioeng Biotechnol. 2016;4.Google Scholar
  69. 69.
    Unnithan AR, Sasikala ARK, Sathishkumar Y, Lee YS, Park CH, Kim CS. Nanoceria doped electrospun antibacterial composite mats for potential biomedical applications. Cer Int. 2014;40(8):12003–12.CrossRefGoogle Scholar
  70. 70.
    Elsabahy M, Wooley KL. Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev. 2012;41(7):2545–61.CrossRefGoogle Scholar
  71. 71.
    Metcalfe AD, Ferguson MWJ. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J R Soc Interface. 2007;4(14):413–37.CrossRefGoogle Scholar
  72. 72.
    Mogosanu GD, Grumezescu AM. Natural and synthetic polymers for wounds and burns dressing. Int J Pharm. 2014;463(2):127–36.CrossRefGoogle Scholar
  73. 73.
    Chereddy KK, Coco R, Memvanga PB, Ucakar B, des Rieux A, Vandermeulen G, Preat V. Combined effect of PLGA and curcumin on wound healing activity. J Control Release. 2013;171(2):208–15.CrossRefGoogle Scholar
  74. 74.
    Mun SH, Joung DK, Kim YS, Kang OH, Kim SB, Seo YS, Kim YC, Lee DS, Shin DW, Kweon KT and others. Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytomedicine. 2013;20(8–9):714–18.CrossRefGoogle Scholar
  75. 75.
    Durgaprasad S, Reetesh R, Hareesh K, Rajput R. Effect of a topical curcumin preparation (BIOCURCUMAX) on burn wound healing in rats. J Pharm Biomed Sci. 2011;8(08).Google Scholar
  76. 76.
    Chu YJ, Yu DM, Wang PH, Xu J, Li DQ, Ding M. Nanotechnology promotes the full-thickness diabetic wound healing effect of recombinant human epidermal growth factor in diabetic rats. Wound Repair Regen. 2010;18(5):499–505.CrossRefGoogle Scholar
  77. 77.
    Nafee N, Youssef A, El-Gowelli H, Asem H, Kandil S. Antibiotic-free nanotherapeutics: hypericin nanoparticles thereof for improved in vitro and in vivo antimicrobial photodynamic therapy and wound healing. Int J Pharm. 2013;454(1):249–58.CrossRefGoogle Scholar
  78. 78.
    Angelova N, Yordanov G. Nanoparticles of poly(styrene-co-maleic acid) as colloidal carriers for the anticancer drug epirubicin. Colloids Surf A. 2014;452:73–81.CrossRefGoogle Scholar
  79. 79.
    Keeney M, Ong SG, Padilla A, Yao ZY, Goodman S, Wu JC, Yang F. Development of poly(beta-amino ester)-based biodegradable nanoparticles for nonviral delivery of minicircle DNA. ACS Nano. 2013;7(8):7241–50.CrossRefGoogle Scholar
  80. 80.
    Park HJ, Lee J, Kim MJ, Kang TJ, Jeong Y, Um SH, Cho SW. Sonic hedgehog intradermal gene therapy using a biodegradable poly (beta-amino esters) nanoparticle to enhance wound healing. Biomaterials. 2012;33(35):9148–56.CrossRefGoogle Scholar
  81. 81.
    Archana D, Dutta J, Dutta PK. Evaluation of chitosan nano dressing for wound healing: characterization, in vitro and in vivo studies. Int J Biol Macromol. 2013;57:193–203.CrossRefGoogle Scholar
  82. 82.
    Gao WJ, Lai JCK, Leung SW. Functional enhancement of chitosan and nanoparticles in cell culture, tissue engineering, and pharmaceutical applications. Front Physiol. 2012;3.Google Scholar
  83. 83.
    Rnjak-Kovacina J, Weiss AS. The role of elastin in wound healing and dermal substitute design. In: Dermal replacements in general, burn, and plastic surgery. New York: Springer; 2013. p. 57–66.CrossRefGoogle Scholar
  84. 84.
    Koria P, Yagi H, Kitagawa Y, Megeed Z, Nahmias Y, Sheridan R, Yarmush ML. Self-assembling elastin-like peptides growth factor chimeric nanoparticles for the treatment of chronic wounds. PNAS. 2011;108(3):1034–9.CrossRefGoogle Scholar
  85. 85.
    Kwon MJ, An S, Choi S, Nam K, Jung HS, Yoon CS, Ko JH, Jun HJ, Kim TK, Jung SJ and others. Effective healing of diabetic skin wounds by using nonviral gene therapy based on minicircle vascular endothelial growth factor DNA and a cationic dendrimer. J Gene Med. 2012;14(4):272–8.CrossRefGoogle Scholar
  86. 86.
    Zarrintaj P, Moghaddam AS, Manouchehri S, Atoufi Z, Amiri A, Amirkhani MA, Nilforoushzadeh MA, Saeb MR, Hamblin MR, Mozafari M. Can regenerative medicine and nanotechnology combine to heal wounds? The search for the ideal wound dressing. Nanomedicine. 2017;12(19):2403–22.CrossRefGoogle Scholar
  87. 87.
    Bhagat V, Becker ML. Degradable adhesives for surgery and tissue engineering. Biomacromol. 2017;18(10):3009–39.CrossRefGoogle Scholar
  88. 88.
    Pupkaite J, Ahumada M, McLaughlin S, Temkit M, Alaziz S, Seymour R, Ruel M, Kochevar I, Griffith M, Suuronen EJ and others. Collagen-based photoactive agent for tissue bonding. ACS Appl Mater Interfaces. 2017;9(11):9265–70.CrossRefGoogle Scholar
  89. 89.
    Xu N, Yao M, Farinelli W, Hajjarian Z, Wang Y, Redmond RW, Kochevar IE. Light-activated sealing of skin wounds. Lasers Surg Med. 2015;47(1):17–29.CrossRefGoogle Scholar
  90. 90.
    Zhao X, Sun X, Yildirimer L, Lang Q, Lin ZYW, Zheng R, Zhang Y, Cui W, Annabi N, Khademhosseini A. Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing. Acta Biomater. 2017;49:66–77.CrossRefGoogle Scholar
  91. 91.
    Nizamoglu S, Gather MC, Humar M, Choi M, Kim S, Kim KS, Hahn SK, Scarcelli G, Randolph M, Redmond RW and others. Bioabsorbable polymer optical waveguides for deep-tissue photomedicine. Nat Comm. 2016;7.Google Scholar
  92. 92.
    Han S, Hwang BW, Jeon EY, Jung D, Lee GH, Keum DH, Kim KS, Yun SH, Cha HJ, Hahn SK. Upconversion nanoparticles/hyaluronate-rose bengal conjugate complex for noninvasive photochemical tissue bonding. ACS Nano. 2017;11(10):9979–88.CrossRefGoogle Scholar
  93. 93.
    Singh M, Nuutila K, Kruse C, Robson MC, Caterson E, Eriksson E. Challenging the conventional therapy: emerging skin graft techniques for wound healing. Plast Reconstr Surg. 2015;136(4):524E–30E.CrossRefGoogle Scholar
  94. 94.
    Tam J, Wang Y, Farinelli WA, Jimenez-Lozano J, Franco W, Sakamoto FH, Cheung EJ, Purschke M, Doukas AG, Anderson RR. Fractional skin harvesting: autologous skin grafting without donor-site morbidity. Plast Reconstr Surg Glob Open. 2013;1(6):e47.CrossRefGoogle Scholar
  95. 95.
    Tam J, Wang Y, Vuong LN, Fisher JM, Farinellil WA, Anderson RR. Reconstitution of full-thickness skin by microcolumn grafting. J Tissue Eng Regen Med. 2017;11(10):2796–805.CrossRefGoogle Scholar
  96. 96.
    Franco W, Jimenez-Lozano JN, Tam J, Purschke M, Wang Y, Sakamoto FH, Farinelli WA, Doukas AG, Anderson RR. Fractional skin harvesting: device operational principles and deployment evaluation. J Med Dev. 2014;8(4).Google Scholar
  97. 97.
    Tam J, Farinelli W, Franco W, Anderson RR. Apparatus for harvesting tissue microcolumns. J Vis Exp. 2018;(140).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Center for Applied NanotechnologyFaculty of Sciences, Universidad MayorHuechuraba, 8580745 RMChile
  2. 2.Wellman Center for Photomedicine, Massachusetts General HospitalBostonUSA
  3. 3.Department of DermatologyHarvard Medical SchoolBostonUSA

Personalised recommendations