Advertisement

Nanomaterials Applications in Cartilage Tissue Engineering

  • Janani Mahendran
  • Jean-Philippe St-PierreEmail author
Chapter

Abstract

Articular cartilage is the smooth layer of soft tissue that covers our bones and allows for the painless movement of our joints. Because of joint pathologies such as arthritis, cartilage can degrade over time in some individuals, causing them to live with considerable pain and reduced mobility. The high prevalence of arthritis and the absence of a cure for osteoarthritis, its most common form, have fueled sustained efforts to develop tissue engineering and regenerative medicine strategies aimed at regenerating cartilage. Despite a number of clinical advances that elicit cartilage repair, true regeneration remains elusive. Recent years have seen an increased use of nanoscale materials in the development of therapies for joint pathologies. Nanomaterials are comparable in scale to the principal building blocks of cartilage extracellular matrix, namely collagen and proteoglycan aggregates. Similarly, nanoparticles are sufficiently small to allow diffusion through the pores of the dense cartilage extracellular matrix and cell targeting. In this chapter, the organization of cartilage’s main building blocks will be reviewed from the nano- to macroscale, and sub-micron particles that participate in cell-cell communication will be highlighted. Efforts to design scaffolds incorporating cell-instructive nanoscale features and to tailor the mechanical properties, or even engineer spatial organization, in scaffolds for cartilage repair using nanomaterials will also be discussed. Finally, key design criteria in nanoparticle synthesis to enable targeted therapeutic delivery will be examined.

Notes

Acknowledgements

The authors are thankful to Ms. Allison Simmonds for her numerous revisions and comments on the chapter. JPS acknowledges funding from the Natural Sciences and Engineering Research Council of Canada (NSERC) through the Discovery Grant and financial support by the University of Ottawa Seed Funding Opportunity Grant.

Disclosure

All authors have read and approved this final version.

References

  1. 1.
    Buckwalter JA, Mankin HJ. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect. 1998;47:477–86.Google Scholar
  2. 2.
    Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health. 2009;1(6):461–8.CrossRefGoogle Scholar
  3. 3.
    Poole AR, Kojima T, Yasuda T, Mwale F, Kobayashi M, Laverty S. Composition and structure of articular cartilage: a template for tissue repair. Clin Orthop Relat Res. 2001;(391 Suppl):S26–33.CrossRefGoogle Scholar
  4. 4.
    Akkiraju H, Nohe A. Role of chondrocytes in cartilage formation, progression of osteoarthritis and cartilage regeneration. J Dev Biol. 2015;3(4):177–92.CrossRefGoogle Scholar
  5. 5.
    Goldring MB, Goldring SR. Osteoarthritis. J Cell Physiol. 2007;213(3):626–34.CrossRefGoogle Scholar
  6. 6.
    Lorenz H, Richter W. Osteoarthritis: cellular and molecular changes in degenerating cartilage. Prog Histochem Cytochem. 2006;40(3):135–63.CrossRefGoogle Scholar
  7. 7.
    Plotnikoff R, Karunamuni N, Lytvyak E, Penfold C, Schopflocher D, Imayama I, Johnson ST, Raine K. Osteoarthritis prevalence and modifiable factors: a population study. BMC Public Health. 2015;15:1195.CrossRefGoogle Scholar
  8. 8.
    Brandt KD, Radin EL, Dieppe PA, van de Putte L. Yet more evidence that osteoarthritis is not a cartilage disease. Ann Rheum Dis. 2006;65(10):1261–4.CrossRefGoogle Scholar
  9. 9.
    Scanzello CR, Goldring SR. The role of synovitis in osteoarthritis pathogenesis. Bone. 2012;51(2):249–57.CrossRefGoogle Scholar
  10. 10.
    Sharma AR, Jagga S, Lee SS, Nam JS. Interplay between cartilage and subchondral bone contributing to pathogenesis of osteoarthritis. Int J Mol Sci. 2013;14(10):19805–30.CrossRefGoogle Scholar
  11. 11.
    Fernandes JC, Martel-Pelletier J, Pelletier JP. The role of cytokines in osteoarthritis pathophysiology. Biorheology. 2002;39(1–2):237–46.Google Scholar
  12. 12.
    Hunter W. Of the structure and diseases of articu-lating cartilages. Philos Trans. 1743;42(470):514–21.Google Scholar
  13. 13.
    Clouet J, Vinatier C, Merceron C, Pot-vaucel M, Maugars Y, Weiss P, Grimandi G, Guicheux J. From osteoarthritis treatments to future regenerative therapies for cartilage. Drug Discov Today. 2009;14(19–20):913–25.CrossRefGoogle Scholar
  14. 14.
    Wang CT, Lin J, Chang CJ, Lin YT, Hou SM. Therapeutic effects of hyaluronic acid on osteoarthritis of the knee. A meta-analysis of randomized controlled trials. J Bone Joint Surg Am. 2004;86-A(3):538–45.CrossRefGoogle Scholar
  15. 15.
    Hellio le Graverand MP, Clemmer RS, Redifer P, Brunell RM, Hayes CW, Brandt KD, Abramson SB, Manning PT, Miller CG, Vignon E. A 2-year randomised, double-blind, placebo-controlled, multicentre study of oral selective iNOS inhibitor, cindunistat (SD-6010), in patients with symptomatic osteoarthritis of the knee. Ann Rheum Dis. 2013;72(2):187–95.Google Scholar
  16. 16.
    Karsdal MA, Byrjalsen I, Alexandersen P, Bihlet A, Andersen JR, Riis BJ, Bay-Jensen AC, Christiansen C, investigators CC. Treatment of symptomatic knee osteoarthritis with oral salmon calcitonin: results from two phase 3 trials. Osteoarthr Cartilage. 2015;23(4):532–43.CrossRefGoogle Scholar
  17. 17.
    Pavelka K, Bruyere O, Cooper C, Kanis JA, Leeb BF, Maheu E, Martel-Pelletier J, Monfort J, Pelletier JP, Rizzoli R and others. Diacerein: benefits, risks and place in the management of osteoarthritis. An opinion-based report from the ESCEO. Drugs Aging. 2016;33(2):75–85.CrossRefGoogle Scholar
  18. 18.
    Reginster JY, Badurski J, Bellamy N, Bensen W, Chapurlat R, Chevalier X, Christiansen C, Genant H, Navarro F, Nasonov E and others. Efficacy and safety of strontium ranelate in the treatment of knee osteoarthritis: results of a double-blind, randomised placebo-controlled trial. Ann Rheum Dis. 2013;72(2):179–86.Google Scholar
  19. 19.
    Yu SP, Hunter DJ. Intra-articular therapies for osteoarthritis. Expert Opin Pharmacother. 2016;17(15):2057–71.CrossRefGoogle Scholar
  20. 20.
    Bauer TW, Schils J. The pathology of total joint arthroplasty. I. Mechanisms of implant fixation. Skeletal Radiol. 1999;28(8):423–32.CrossRefGoogle Scholar
  21. 21.
    Bauer TW, Schils J. The pathology of total joint arthroplasty. II. Mechanisms of implant failure. Skeletal Radiol. 1999;28(9):483–97.CrossRefGoogle Scholar
  22. 22.
    Hangody L, Kish G, Karpati Z, Szerb I, Udvarhelyi I. Arthroscopic autogenous osteochondral mosaicplasty for the treatment of femoral condylar articular defects. A preliminary report. Knee Surg Sports Traumatol Arthrosc. 1997;5(4):262–7.CrossRefGoogle Scholar
  23. 23.
    Szerb I, Hangody L, Duska Z, Kaposi NP. Mosaicplasty: long-term follow-up. Bull Hosp Jt Dis. 2005;63(1–2):54–62.Google Scholar
  24. 24.
    Bartha L, Vajda A, Duska Z, Rahmeh H, Hangody L. Autologous osteochondral mosaicplasty grafting. J Orthop Sports Phys Ther. 2006;36(10):739–50.CrossRefGoogle Scholar
  25. 25.
    Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res. 2001;(391 Suppl):S362–9.CrossRefGoogle Scholar
  26. 26.
    Shapiro F, Koide S, Glimcher MJ. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am. 1993;75(4):532–53.CrossRefGoogle Scholar
  27. 27.
    Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331(14):889–95.CrossRefGoogle Scholar
  28. 28.
    Brittberg M, Peterson L, Sjogren-Jansson E, Tallheden T, Lindahl A. Articular cartilage engineering with autologous chondrocyte transplantation. A review of recent developments. J Bone Joint Surg Am. 2003;85-A(Suppl 3):109–15.CrossRefGoogle Scholar
  29. 29.
    Peterson L, Vasiliadis HS, Brittberg M, Lindahl A. Autologous chondrocyte implantation: a long-term follow-up. Am J Sports Med. 2010;38(6):1117–24.CrossRefGoogle Scholar
  30. 30.
    Vinatier C, Guicheux J. Cartilage tissue engineering: from biomaterials and stem cells to osteoarthritis treatments. Ann Phys Rehabil Med. 2016;59(3):139–44.CrossRefGoogle Scholar
  31. 31.
    Cohen ZA, McCarthy DM, Kwak SD, Legrand P, Fogarasi F, Ciaccio EJ, Ateshian GA. Knee cartilage topography, thickness, and contact areas from MRI: in-vitro calibration and in-vivo measurements. Osteoarthr Cartilage. 1999;7(1):95–109.CrossRefGoogle Scholar
  32. 32.
    Pollock J, O’Toole RV, Nowicki SD, Eglseder WA. Articular cartilage thickness at the distal radius: a cadaveric study. J Hand Surg Am. 2013;38(8):1477–81. Discussion 1482-3.CrossRefGoogle Scholar
  33. 33.
    Bergholt MS, St-Pierre JP, Offeddu GS, Parmar PA, Albro MB, Puetzer JL, Oyen ML, Stevens MM. Raman spectroscopy reveals new insights into the zonal organization of native and tissue-engineered articular cartilage. ACS Cent Sci. 2016;2(12):885–95.CrossRefGoogle Scholar
  34. 34.
    Jeffery AK, Blunn GW, Archer CW, Bentley G. Three-dimensional collagen architecture in bovine articular cartilage. J Bone Joint Surg Br. 1991;73(5):795–801.CrossRefGoogle Scholar
  35. 35.
    Fujioka R, Aoyama T, Takakuwa T. The layered structure of the articular surface. Osteoarthr Cartilage. 2013;21(8):1092–8.CrossRefGoogle Scholar
  36. 36.
    MacConaill MA. The movements of bones and joints; fundamental principles with particular reference to rotation movement. J Bone Joint Surg Br. 1948;30B(2):322–6.CrossRefGoogle Scholar
  37. 37.
    Spitters TW, Leijten JC, Deus FD, Costa IB, van Apeldoorn AA, van Blitterswijk CA, Karperien M. A dual flow bioreactor with controlled mechanical stimulation for cartilage tissue engineering. Tissue Eng Part C Methods. 2013;19(10):774–83.CrossRefGoogle Scholar
  38. 38.
    Zhou S, Cui Z, Urban JP. Factors influencing the oxygen concentration gradient from the synovial surface of articular cartilage to the cartilage-bone interface: a modeling study. Arthritis Rheum. 2004;50(12):3915–24.CrossRefGoogle Scholar
  39. 39.
    Coates EE, Fisher JP. Phenotypic variations in chondrocyte subpopulations and their response to in vitro culture and external stimuli. Ann Biomed Eng. 2010;38(11):3371–88.CrossRefGoogle Scholar
  40. 40.
    Vanden Berg-Foels WS, Scipioni L, Huynh C, Wen X. Helium ion microscopy for high-resolution visualization of the articular cartilage collagen network. J Microsc. 2012;246(2):168–76.CrossRefGoogle Scholar
  41. 41.
    Buckwalter JA, Mankin HJ, Grodzinsky AJ. Articular cartilage and osteoarthritis. Instr Course Lect. 2005;54:465–80.Google Scholar
  42. 42.
    Wilusz RE, Sanchez-Adams J, Guilak F. The structure and function of the pericellular matrix of articular cartilage. Matrix Biol. 2014;39:25–32.CrossRefGoogle Scholar
  43. 43.
    Benninghoff A. Form und Bau der Gelenkknorpel in ihren Beziehungen zur Funktion. Der Aufbau des Gelenkknorpels in seinen Beziehungen zur Funktion. Zeitschriftfar Zellforschung und mikroskopische Anatomie. 1925;2(5):783–862.Google Scholar
  44. 44.
    Guilak F, Nims RJ, Dicks A, Wu CL, Meulenbelt I. Osteoarthritis as a disease of the cartilage pericellular matrix. Matrix Biol. 2018;71–72:40–50.CrossRefGoogle Scholar
  45. 45.
    Hall BK, Newman S. Cartilage: molecular aspects. Boca Raton, FL: CRC Press; 1991. p. 268.Google Scholar
  46. 46.
    Weiss C. Ultrastructural characteristics of osteoarthritis. Fed Proc. 1973;32(4):1459–66.Google Scholar
  47. 47.
    Poole AR, Pidoux I, Reiner A, Rosenberg L. An immunoelectron microscope study of the organization of proteoglycan monomer, link protein, and collagen in the matrix of articular cartilage. J Cell Biol. 1982;93(3):921–37.CrossRefGoogle Scholar
  48. 48.
    Comper WD, Williams RP. Hydrodynamics of concentrated proteoglycan solutions. J Biol Chem. 1987;262(28):13464–71.Google Scholar
  49. 49.
    Mayan MD, Gago-Fuentes R, Carpintero-Fernandez P, Fernandez-Puente P, Filgueira-Fernandez P, Goyanes N, Valiunas V, Brink PR, Goldberg GS, Blanco FJ. Articular chondrocyte network mediated by gap junctions: role in metabolic cartilage homeostasis. Ann Rheum Dis. 2015;74(1):275–84.CrossRefGoogle Scholar
  50. 50.
    Tkach M, Thery C. Communication by extracellular vesicles: where we are and where we need to go. Cell. 2016;164(6):1226–32.CrossRefGoogle Scholar
  51. 51.
    Hashimoto S, Ochs RL, Komiya S, Lotz M. Linkage of chondrocyte apoptosis and cartilage degradation in human osteoarthritis. Arthritis Rheum. 1998;41(9):1632–8.CrossRefGoogle Scholar
  52. 52.
    Golub EE. Role of matrix vesicles in biomineralization. Biochim Biophys Acta. 2009;1790(12):1592–8.CrossRefGoogle Scholar
  53. 53.
    Miyaki S, Lotz MK. Extracellular vesicles in cartilage homeostasis and osteoarthritis. Curr Opin Rheumatol. 2018;30(1):129–35.CrossRefGoogle Scholar
  54. 54.
    Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.CrossRefGoogle Scholar
  55. 55.
    Williams DF. The biomaterials conundrum in tissue engineering. Tissue Eng Part A. 2014;20(7–8):1129–31.CrossRefGoogle Scholar
  56. 56.
    Braghirolli DI, Steffens D, Pranke P. Electrospinning for regenerative medicine: a review of the main topics. Drug Discov Today. 2014;19(6):743–53.CrossRefGoogle Scholar
  57. 57.
    Shin HJ, Lee CH, Cho IH, Kim YJ, Lee YJ, Kim IA, Park KD, Yui N, Shin JW. Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: mechanical stability, degradation and cellular responses under mechanical stimulation in vitro. J Biomater Sci Polym Ed. 2006;17(1–2):103–19.CrossRefGoogle Scholar
  58. 58.
    Li WJ, Tuli R, Okafor C, Derfoul A, Danielson KG, Hall DJ, Tuan RS. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials. 2005;26(6):599–609.CrossRefGoogle Scholar
  59. 59.
    Li WJ, Jiang YJ, Tuan RS. Chondrocyte phenotype in engineered fibrous matrix is regulated by fiber size. Tissue Eng. 2006;12(7):1775–85.CrossRefGoogle Scholar
  60. 60.
    Wise JK, Yarin AL, Megaridis CM, Cho M. Chondrogenic differentiation of human mesenchymal stem cells on oriented nanofibrous scaffolds: engineering the superficial zone of articular cartilage. Tissue Eng Part A. 2009;15(4):913–21.CrossRefGoogle Scholar
  61. 61.
    Bean AC, Tuan RS. Fiber diameter and seeding density influence chondrogenic differentiation of mesenchymal stem cells seeded on electrospun poly(epsilon-caprolactone) scaffolds. Biomed Mater. 2015;10(1):015018.CrossRefGoogle Scholar
  62. 62.
    Shanmugasundaram S, Chaudhry H, Arinzeh TL. Microscale versus nanoscale scaffold architecture for mesenchymal stem cell chondrogenesis. Tissue Eng Part A. 2011;17(5–6):831–40.CrossRefGoogle Scholar
  63. 63.
    Levorson EJ, Raman Sreerekha P, Chennazhi KP, Kasper FK, Nair SV, Mikos AG. Fabrication and characterization of multiscale electrospun scaffolds for cartilage regeneration. Biomed Mater. 2013;8(1):014103.CrossRefGoogle Scholar
  64. 64.
    Jankovic B, Pelipenko J, Skarabot M, Musevic I, Kristl J. The design trend in tissue-engineering scaffolds based on nanomechanical properties of individual electrospun nanofibers. Int J Pharm. 2013;455(1–2):338–47.CrossRefGoogle Scholar
  65. 65.
    Li WJ, Mauck RL, Cooper JA, Yuan X, Tuan RS. Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J Biomech. 2007;40(8):1686–93.CrossRefGoogle Scholar
  66. 66.
    Shafiee A, Seyedjafari E, Sadat Taherzadeh E, Dinarvand P, Soleimani M, Ai J. Enhanced chondrogenesis of human nasal septum derived progenitors on nanofibrous scaffolds. Mater Sci Eng C Mater Biol Appl. 2014;40:445–54.CrossRefGoogle Scholar
  67. 67.
    Owida HA, Yang R, Cen L, Kuiper NJ, Yang Y. Induction of zonal-specific cellular morphology and matrix synthesis for biomimetic cartilage regeneration using hybrid scaffolds. J R Soc Interface. 2018;15(143).CrossRefGoogle Scholar
  68. 68.
    Schneider T, Kohl B, Sauter T, Kratz K, Lendlein A, Ertel W, Schulze-Tanzil G. Influence of fiber orientation in electrospun polymer scaffolds on viability, adhesion and differentiation of articular chondrocytes. Clin Hemorheol Microcirc. 2012;52(2–4):325–36.Google Scholar
  69. 69.
    Li D, Wang YL, Xia YN. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett. 2003;3(8):1167–71.CrossRefGoogle Scholar
  70. 70.
    Kim GH. Electrospun PCL nanofibers with anisotropic mechanical properties as a biomedical scaffold. Biomed Mater. 2008;3(2).CrossRefGoogle Scholar
  71. 71.
    Fisher MB, Henning EA, Soegaard N, Esterhai JL, Mauck RL. Organized nanofibrous scaffolds that mimic the macroscopic and microscopic architecture of the knee meniscus. Acta Biomater. 2013;9(1):4496–504.CrossRefGoogle Scholar
  72. 72.
    Thorvaldsson A, Stenhamre H, Gatenholm P, Walkenstrom P. Electrospinning of highly porous scaffolds for cartilage regeneration. Biomacromol. 2008;9(3):1044–9.CrossRefGoogle Scholar
  73. 73.
    Baker BM, Shah RP, Silverstein AM, Esterhai JL, Burdick JA, Mauck RL. Sacrificial nanofibrous composites provide instruction without impediment and enable functional tissue formation. Proc Natl Acad Sci USA. 2012;109(35):14176–81.CrossRefGoogle Scholar
  74. 74.
    Chen HL, Malheiro ADFB, van Blitterswijk C, Mota C, Wieringa PA, Moroni L. Direct writing electrospinning of scaffolds with multidimensional fiber architecture for hierarchical tissue engineering. ACS Appl Mater Inter. 2017;9(44):38187–200.CrossRefGoogle Scholar
  75. 75.
    Ma PX, Zhang R. Synthetic nano-scale fibrous extracellular matrix. J Biomed Mater Res. 1999;46(1):60–72.CrossRefGoogle Scholar
  76. 76.
    Hu J, Feng K, Liu X, Ma PX. Chondrogenic and osteogenic differentiations of human bone marrow-derived mesenchymal stem cells on a nanofibrous scaffold with designed pore network. Biomaterials. 2009;30(28):5061–7.CrossRefGoogle Scholar
  77. 77.
    Gupte MJ, Swanson WB, Hu J, Jin X, Ma H, Zhang Z, Liu Z, Feng K, Feng G, Xiao G and others. Pore size directs bone marrow stromal cell fate and tissue regeneration in nanofibrous macroporous scaffolds by mediating vascularization. Acta Biomater. 2018;82:1–11.CrossRefGoogle Scholar
  78. 78.
    He L, Liu B, Xipeng G, Xie G, Liao S, Quan D, Cai D, Lu J, Ramakrishna S. Microstructure and properties of nano-fibrous PCL-b-PLLA scaffolds for cartilage tissue engineering. Eur Cell Mater. 2009;18:63–74.CrossRefGoogle Scholar
  79. 79.
    Prasopthum A, Shakesheff KM, Yang J. Direct three-dimensional printing of polymeric scaffolds with nanofibrous topography. Biofabrication. 2018;10(2):025002.CrossRefGoogle Scholar
  80. 80.
    Mahapatra C, Kim JJ, Lee JH, Jin GZ, Knowles JC, Kim HW. Differential chondro- and osteo-stimulation in three-dimensional porous scaffolds with different topological surfaces provides a design strategy for biphasic osteochondral engineering. J Tissue Eng. 2019;10:2041731419826433.CrossRefGoogle Scholar
  81. 81.
    Zhang S. Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol. 2003;21(10):1171–8.CrossRefGoogle Scholar
  82. 82.
    Lim EH, Sardinha JP, Myers S. Nanotechnology biomimetic cartilage regenerative scaffolds. Arch Plast Surg. 2014;41(3):231–40.CrossRefGoogle Scholar
  83. 83.
    Shah RN, Shah NA, Del Rosario Lim MM, Hsieh C, Nuber G, Stupp SI. Supramolecular design of self-assembling nanofibers for cartilage regeneration. Proc Natl Acad Sci USA. 2010;107(8):3293–8.CrossRefGoogle Scholar
  84. 84.
    Sun X, Yin H, Wang Y, Lu J, Shen X, Lu C, Tang H, Meng H, Yang S, Yu W and others. In situ articular cartilage regeneration through endogenous reparative cell homing using a functional bone marrow-specific scaffolding system. ACS Appl Mater Inter. 2018;10(45):38715–28.CrossRefGoogle Scholar
  85. 85.
    Childs A, Hemraz UD, Castro NJ, Fenniri H, Zhang LG. Novel biologically-inspired rosette nanotube PLLA scaffolds for improving human mesenchymal stem cell chondrogenic differentiation. Biomed Mater. 2013;8(6):065003.CrossRefGoogle Scholar
  86. 86.
    Park GE, Pattison MA, Park K, Webster TJ. Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds. Biomaterials. 2005;26(16):3075–82.CrossRefGoogle Scholar
  87. 87.
    Balasundaram G, Storey DM, Webster TJ. Novel nano-rough polymers for cartilage tissue engineering. Int J Nanomed. 2014;9:1845–53.Google Scholar
  88. 88.
    Wu YN, Law JB, He AY, Low HY, Hui JH, Lim CT, Yang Z, Lee EH. Substrate topography determines the fate of chondrogenesis from human mesenchymal stem cells resulting in specific cartilage phenotype formation. Nanomedicine. 2014;10(7):1507–16.CrossRefGoogle Scholar
  89. 89.
    Cohen NP, Foster RJ, Mow VC. Composition and dynamics of articular cartilage: structure, function, and maintaining healthy state. J Orthop Sports Phys Ther. 1998;28(4):203–15.CrossRefGoogle Scholar
  90. 90.
    Chahine NO, Collette NM, Thomas CB, Genetos DC, Loots GG. Nanocomposite scaffold for chondrocyte growth and cartilage tissue engineering: effects of carbon nanotube surface functionalization. Tissue Eng Part A. 2014;20(17–18):2305–15.CrossRefGoogle Scholar
  91. 91.
    Boyer C, Figueiredo L, Pace R, Lesoeur J, Rouillon T, Visage CL, Tassin JF, Weiss P, Guicheux J, Rethore G. Laponite nanoparticle-associated silated hydroxypropylmethyl cellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering. Acta Biomater. 2018;65:112–22.CrossRefGoogle Scholar
  92. 92.
    Chen J, An R, Han L, Wang X, Zhang Y, Shi L, Ran R. Tough hydrophobic association hydrogels with self-healing and reforming capabilities achieved by polymeric core-shell nanoparticles. Mater Sci Eng C Mater Biol Appl. 2019;99:460–7.CrossRefGoogle Scholar
  93. 93.
    Naseri N, Deepa B, Mathew AP, Oksman K, Girandon L. Nanocellulose-based Interpenetrating Polymer Network (IPN) hydrogels for cartilage applications. Biomacromol. 2016;17(11):3714–23.CrossRefGoogle Scholar
  94. 94.
    Wang C, Shen H, Tian Y, Xie Y, Li A, Ji L, Niu Z, Wu D, Qiu D. Bioactive nanoparticle-gelatin composite scaffold with mechanical performance comparable to cancellous bones. ACS Appl Mater Inter. 2014;6(15):13061–8.CrossRefGoogle Scholar
  95. 95.
    Bellucci G, Seedhom BB. Mechanical behaviour of articular cartilage under tensile cyclic load. Rheumatology (Oxford). 2001;40(12):1337–45.CrossRefGoogle Scholar
  96. 96.
    Racunica TL, Teichtahl AJ, Wang Y, Wluka AE, English DR, Giles GG, O’Sullivan R, Cicuttini FM. Effect of physical activity on articular knee joint structures in community-based adults. Arthritis Rheum. 2007;57(7):1261–8.CrossRefGoogle Scholar
  97. 97.
    Andriacchi TP, Favre J, Erhart-Hledik JC, Chu CR. A systems view of risk factors for knee osteoarthritis reveals insights into the pathogenesis of the disease. Ann Biomed Eng. 2015;43(2):376–87.CrossRefGoogle Scholar
  98. 98.
    Sanchez-Adams J, Leddy HA, McNulty AL, O’Conor CJ, Guilak F. The mechanobiology of articular cartilage: bearing the burden of osteoarthritis. Curr Rheumatol Rep. 2014;16(10):451.CrossRefGoogle Scholar
  99. 99.
    Son B, Kim HD, Kim M, Kim JA, Lee J, Shin H, Hwang NS, Park TH. Physical stimuli-induced chondrogenic differentiation of mesenchymal stem cells using magnetic nanoparticles. Adv Healthc Mater. 2015;4(9):1339–47.CrossRefGoogle Scholar
  100. 100.
    Zhang N, Lock J, Sallee A, Liu H. Magnetic nanocomposite hydrogel for potential cartilage tissue engineering: synthesis, characterization, and cytocompatibility with bone marrow derived mesenchymal stem cells. ACS Appl Mater Inter. 2015;7(37):20987–98.CrossRefGoogle Scholar
  101. 101.
    Brady MA, Talvard L, Vella A, Ethier CR. Bio-inspired design of a magnetically active trilayered scaffold for cartilage tissue engineering. J Tissue Eng Regen Med. 2017;11(4):1298–302.CrossRefGoogle Scholar
  102. 102.
    Rotherham M, El Haj AJ. Remote activation of the Wnt/beta-catenin signalling pathway using functionalised magnetic particles. PLoS ONE. 2015;10(3):e0121761.CrossRefGoogle Scholar
  103. 103.
    Kanczler JM, Sura HS, Magnay J, Green D, Oreffo RO, Dobson JP, El Haj AJ. Controlled differentiation of human bone marrow stromal cells using magnetic nanoparticle technology. Tissue Eng Part A. 2010;16(10):3241–50.CrossRefGoogle Scholar
  104. 104.
    Stolfa S, Skorvanek M, Stolfa P, Rosocha J, Vasko G, Sabo J. Effects of static magnetic field and pulsed electromagnetic field on viability of human chondrocytes in vitro. Physiol Res. 2007;56(Suppl 1):S45–9.Google Scholar
  105. 105.
    Amin HD, Brady MA, St-Pierre JP, Stevens MM, Overby DR, Ethier CR. Stimulation of chondrogenic differentiation of adult human bone marrow-derived stromal cells by a moderate-strength static magnetic field. Tissue Eng Part A. 2014;20(11–12):1612–20.CrossRefGoogle Scholar
  106. 106.
    Go G, Han J, Zhen J, Zheng S, Yoo A, Jeon MJ, Park JO, Park S. A magnetically actuated microscaffold containing mesenchymal stem cells for articular cartilage repair. Adv Healthc Mater. 2017;6(13).Google Scholar
  107. 107.
    Urban JP, Hall AC, Gehl KA. Regulation of matrix synthesis rates by the ionic and osmotic environment of articular chondrocytes. J Cell Physiol. 1993;154(2):262–70.CrossRefGoogle Scholar
  108. 108.
    Mobasheri A, Matta C, Uzieliene I, Budd E, Martin-Vasallo P, Bernotiene E. The chondrocyte channelome: a narrative review. Joint Bone Spine. 2019;86(1):29–35.CrossRefGoogle Scholar
  109. 109.
    Xu J, Wang W, Clark CC, Brighton CT. Signal transduction in electrically stimulated articular chondrocytes involves translocation of extracellular calcium through voltage-gated channels. Osteoarthr Cartilage. 2009;17(3):397–405.CrossRefGoogle Scholar
  110. 110.
    Khang D, Lu J, Yao C, Haberstroh KM, Webster TJ. The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials. 2008;29(8):970–83.CrossRefGoogle Scholar
  111. 111.
    Park JS, Yang HN, Woo DG, Chung HM, Park KH. In vitro and in vivo chondrogenesis of rabbit bone marrow-derived stromal cells in fibrin matrix mixed with growth factor loaded in nanoparticles. Tissue Eng Part A. 2009;15(8):2163–75.CrossRefGoogle Scholar
  112. 112.
    Santo VE, Popa EG, Mano JF, Gomes ME, Reis RL. Natural assembly of platelet lysate-loaded nanocarriers into enriched 3D hydrogels for cartilage regeneration. Acta Biomater. 2015;19:56–65.CrossRefGoogle Scholar
  113. 113.
    Lu H, Lv L, Dai Y, Wu G, Zhao H, Zhang F. Porous chitosan scaffolds with embedded hyaluronic acid/chitosan/plasmid-DNA nanoparticles encoding TGF-beta1 induce DNA controlled release, transfected chondrocytes, and promoted cell proliferation. PLoS ONE. 2013;8(7):e69950.CrossRefGoogle Scholar
  114. 114.
    Mirza EH, Pan-Pan C, Wan Ibrahim WM, Djordjevic I, Pingguan-Murphy B. Chondroprotective effect of zinc oxide nanoparticles in conjunction with hypoxia on bovine cartilage-matrix synthesis. J Biomed Mater Res A. 2015;103(11):3554–63.CrossRefGoogle Scholar
  115. 115.
    Albro MB, Nims RJ, Durney KM, Cigan AD, Shim JJ, Vunjak-Novakovic G, Hung CT, Ateshian GA. Heterogeneous engineered cartilage growth results from gradients of media-supplemented active TGF-beta and is ameliorated by the alternative supplementation of latent TGF-beta. Biomaterials. 2016;77:173–85.CrossRefGoogle Scholar
  116. 116.
    Albro MB, Bergholt MS, St-Pierre JP, Vinals Guitart A, Zlotnick HM, Evita EG, Stevens MM. Raman spectroscopic imaging for quantification of depth-dependent and local heterogeneities in native and engineered cartilage. NPJ Regen Med. 2018;3:3.CrossRefGoogle Scholar
  117. 117.
    Gibson M, Beachley V, Coburn J, Bandinelli PA, Mao HQ, Elisseeff J. Tissue extracellular matrix nanoparticle presentation in electrospun nanofibers. Biomed Res Int. 2014;2014:469120.CrossRefGoogle Scholar
  118. 118.
    Li Y, Jiang T, Zheng L, Zhao J. Osteogenic differentiation of mesenchymal stem cells (MSCs) induced by three calcium phosphate ceramic (CaP) powders: a comparative study. Mater Sci Eng C Mater Biol Appl. 2017;80:296–300.CrossRefGoogle Scholar
  119. 119.
    Kon E, Delcogliano M, Filardo G, Pressato D, Busacca M, Grigolo B, Desando G, Marcacci M. A novel nano-composite multi-layered biomaterial for treatment of osteochondral lesions: technique note and an early stability pilot clinical trial. Injury. 2010;41(7):693–701.CrossRefGoogle Scholar
  120. 120.
    Amadori S, Torricelli P, Panzavolta S, Parrilli A, Fini M, Bigi A. Multi-layered scaffolds for osteochondral tissue engineering: in vitro response of co-cultured human mesenchymal stem cells. Macromol Biosci. 2015;15(11):1535–45.CrossRefGoogle Scholar
  121. 121.
    Radhakrishnan J, Manigandan A, Chinnaswamy P, Subramanian A, Sethuraman S. Gradient nano-engineered in situ forming composite hydrogel for osteochondral regeneration. Biomaterials. 2018;162:82–98.CrossRefGoogle Scholar
  122. 122.
    Li C, Armstrong JP, Pence IJ, Kit-Anan W, Puetzer JL, Correia Carreira S, Moore AC, Stevens MM. Glycosylated superparamagnetic nanoparticle gradients for osteochondral tissue engineering. Biomaterials. 2018;176:24–33.CrossRefGoogle Scholar
  123. 123.
    Li C, Ouyang L, Pence IJ, Moore AC, Lin Y, Winter CW, Armstrong JPK, Stevens MM. Buoyancy-driven gradients for biomaterial fabrication and tissue engineering. Adv Mater. 2019:e1900291.Google Scholar
  124. 124.
    Rothenfluh DA, Bermudez H, O’Neil CP, Hubbell JA. Biofunctional polymer nanoparticles for intra-articular targeting and retention in cartilage. Nat Mater. 2008;7(3):248–54.CrossRefGoogle Scholar
  125. 125.
    Bajpayee AG, Grodzinsky AJ. Cartilage-targeting drug delivery: can electrostatic interactions help? Nat Rev Rheumatol. 2017;13(3):183–93.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringUniversity of OttawaOttawaCanada

Personalised recommendations