Advertisement

Advanced Surface Characterization Techniques in Nano- and Biomaterials

  • Ricardo A. Zamora
  • Cristián Gutiérrez-Cerón
  • Jesum Alves Fernandes
  • Gabriel AbarcaEmail author
Chapter

Abstract

Although metallic nanoparticles have been applied in various fields of biomedical engineering research for quite some time, generating new biomaterials with improved regenerative capabilities remains the cornerstone in tissue engineering and regenerative medicine. These materials, once implanted in patients, will ultimately be invaded by endogenous cells, which emphasizes the relevance of surface composition as a critical factor in determining the regenerative potency of a given material. In this chapter, we present a brief revision on fundamental concepts and an up-to-date overview for surface characterization of nano-engineered structures.

Notes

Acknowledgements

The authors are grateful to FONDECYT Iniciación N°11170879. RZB thanks Dicyt-USACH for a postdoctoral grant N021841AL_POSTDOC.

Disclosure

All authors have read and approved the final version.

References

  1. 1.
    McNamara K, Tofail SAM. Nanosystems: the use of nanoalloys, metallic, bimetallic, and magnetic nanoparticles in biomedical applications. Phys Chem Chem Phys. 2015;17(42):27981–95.CrossRefGoogle Scholar
  2. 2.
    Mout R, Moyano DF, Rana S, Rotello VM. Surface functionalization of nanoparticles for nanomedicine. Chem Soc Rev. 2012;41(7):2539–44.CrossRefGoogle Scholar
  3. 3.
    Huang X, Li L, Liu T, Hao N, Liu H, Chen D, Tang F. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano. 2011;5(7):5390–9.CrossRefGoogle Scholar
  4. 4.
    Spicer CD, Jumeaux C, Gupta B, Stevens MM. Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications. Chem Soc Rev. 2018;47(10):3574–620.CrossRefGoogle Scholar
  5. 5.
    Rahman IA, Padavettan V. Synthesis of Silica nanoparticles by Sol-Gel: size-dependent properties, surface modification, and applications in silica-polymer nanocompositesa review. J Nanomater. 2012;2012.CrossRefGoogle Scholar
  6. 6.
    Carlson C, Hussein SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B. 2008;112(43):13608–19.CrossRefGoogle Scholar
  7. 7.
    Woźniak A, Malankowska A, Nowaczyk G, Grześkowiak BF, Tuśnio K, Słomski R, Zaleska-Medynska A, Jurga S. Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications. J Mater Sci. 2017;28(6):1–11.Google Scholar
  8. 8.
    Alford A, Kozlovskaya V, Kharlampieva E. Small angle scattering for pharmaceutical applications: from drugs to drug delivery systems. In: Chaudhuri B, Muñoz IG, Qian S, Urban VS, editors. Biological small angle scattering: techniques, strategies and tips. Singapore: Springer; 2017. p. 239–62.CrossRefGoogle Scholar
  9. 9.
    Li T, Senesi AJ, Lee B. Small angle X-ray scattering for nanoparticle research. Chem Rev. 2016;116(18):11128–80.CrossRefGoogle Scholar
  10. 10.
    Di Cola E, Grillo I, Ristori S. Small angle X-ray and neutron scattering: powerful tools for studying the structure of drug-loaded liposomes. Pharmaceutics. 2016;8(2):1–16.Google Scholar
  11. 11.
    Nawroth T, Johnson R, Krebs L, Khoshakhlagh P, Langguth P, Hellmann N, Goerigk G, Boesecke P, Bravin A, Duc GL and others. Target nanoparticles for therapy-SANS and DLS of drug carrier liposomes and polymer nanoparticles. J Phys Conf Ser. 2016;746(1):28–31.Google Scholar
  12. 12.
    Chu B, Liu T. Characterization of nanoparticles by scattering techniques. J Nanopart Res. 2000;2(1):29–41.CrossRefGoogle Scholar
  13. 13.
    Becker J. Plasmons as sensors. Berlin, Heidelberg: Springer; 2012.CrossRefGoogle Scholar
  14. 14.
    Roe PMSRJ, Roe RJ. Methods of X-ray and neutron scattering in polymer science. New York: Oxford University Press; 2000. p. 331.Google Scholar
  15. 15.
    Kempkens H, Uhlenbusch J. Scattering diagnostics of low-temperature plasmas (Rayleigh scattering, Thomson scattering, CARS). Plasma Sour Sci Technol. 2000;9(4):492–506.CrossRefGoogle Scholar
  16. 16.
    In the case of neutrons, these are dispersed by the nucleus.Google Scholar
  17. 17.
    Craievich AF. Small-angle X-ray scattering by nanostructured materials. In: Klein L, Aparicio M, Jitianu A, editors. Handbook of sol-gel science and technology: processing, characterization and applications. Cham: Springer International Publishing; 2018. p. 1185–230.CrossRefGoogle Scholar
  18. 18.
    Dmitri IS, Michel HJK. Small-angle scattering studies of biological macromolecules in solution. Rep Prog Phys. 2003;66(10):1735.CrossRefGoogle Scholar
  19. 19.
    Jiao Y, Akcora P. Understanding the role of grafted polystyrene chain conformation in assembly of magnetic nanoparticles. Phys Rev E. 2014;90(4):1–9.CrossRefGoogle Scholar
  20. 20.
    Bonini M, Fratini E, Baglioni P. SAXS study of chain-like structures formed by magnetic nanoparticles. Mat Sci Eng C. 2007;27(5–8 SPEC. ISS.):1377–81.CrossRefGoogle Scholar
  21. 21.
    Boldon L, Laliberte F, Liu L. Review of the fundamental theories behind small angle X-ray scattering, molecular dynamics simulations, and relevant integrated application. Nano Rev. 2015;6(1):25661.CrossRefGoogle Scholar
  22. 22.
    Londoño OM, Tancredi P, Rivas P, Muraca D, Socolovsky LM, Knobel M. Small-angle X-ray scattering to analyze the morphological properties of nanoparticulated systems. Cham: Springer International Publishing; 2018. p. 37–75.Google Scholar
  23. 23.
    Agbabiaka A, Wiltfong M, Park C. Small angle X-ray scattering technique for the particle size distribution of nonporous nanoparticles. J Nanoparticles. 2013;2013:1–11.CrossRefGoogle Scholar
  24. 24.
    Bender P, Bogart LK, Posth O, Szczerba W, Rogers SE, Castro A, Nilsson L, Zeng LJ, Sugunan A, Sommertune J and others. Structural and magnetic properties of multi-core nanoparticles analysed using a generalised numerical inversion method. Sci. Reports. 2017;7:1–14.Google Scholar
  25. 25.
    Ristori S, Grillo I, Lusa S, Thamm J, Valentino G, Campani V, Caraglia M, Steiniger F, Luciani P, De Rosa G. Structural characterization of self-assembling hybrid nanoparticles for Bisphosphonate delivery in tumors. Mol Pharm. 2018;15(3):1258–65.CrossRefGoogle Scholar
  26. 26.
    He W, Yan J, Sui F, Wang S, Su X, Qu Y, Yang Q, Guo H, Ji M, Lu W and others. Turning a Luffa protein into a self-assembled biodegradable nanoplatform for multitargeted cancer therapy. ACS Nano 2018;12(11):11664–77.CrossRefGoogle Scholar
  27. 27.
    Lakshminarayanan R, Ye E, Young DJ, Li Z, Loh XJ. Recent advances in the development of antimicrobial nanoparticles for combating resistant pathogens. Adv Healthc Mat. 2018;7(13):1–13.Google Scholar
  28. 28.
    García I, Henriksen-Lacey M, Calvo J, De Aberasturi DJ, Paz MM, Liz-Marzán LM. Size-dependent transport and cytotoxicity of mitomycin-gold nanoparticle conjugates in 2D and 3D Mammalian cell models. Bioconjugate Chem. 2019;30(1):242–52.CrossRefGoogle Scholar
  29. 29.
    de Souza ME, Verdi CM, de Andrade ENC, Santos RCV. Chapter 12—antiviral and antimicrobial (antibacterial) potentiality of nano drugs. In: Mohapatra SS, Ranjan S, Dasgupta N, Mishra RK, Thomas S, editors. Applications of targeted nano drugs and delivery systems. Elsevier; 2019. pp. 327–42.Google Scholar
  30. 30.
    Spagnol C, Fragal EH, Pereira AGB, Nakamura CV, Muniz EC, Follmann HDM, Silva R, Rubira AF. Cellulose nanowhiskers decorated with silver nanoparticles as an additive to antibacterial polymers membranes fabricated by electrospinning. J Coll Interf. Sci. 2018;531:705–15.CrossRefGoogle Scholar
  31. 31.
    Cagno V, Andreozzi P, D’Alicarnasso M, Silva PJ, Mueller M, Galloux M, Goffic RL, Jones ST, Vallino M, Hodek J and others. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. Nat Mater. 2018;17(2):195–203.CrossRefGoogle Scholar
  32. 32.
    De Souza E, Silva JM, Hanchuk TDM, Santos MI, Kobarg J, Bajgelman MC, Cardoso MB. Viral inhibition mechanism mediated by surface-modified silica nanoparticles. ACS Appl Mater Interf. 2016;8(26):16564–72.CrossRefGoogle Scholar
  33. 33.
    Sokolowski M, Bartsch C, Spiering VJ, Prévost S, Appavou MS, Schweins R, Gradzielski M. Preparation of polymer brush grafted anionic or cationic silica nanoparticles: systematic variation of the polymer shell. Macromolecules. 2018;51(17):6936–48.CrossRefGoogle Scholar
  34. 34.
    Yi Z, Dumée LF, Garvey CJ, Feng C, She F, Rookes JE, Mudie S, Cahill DM, Kong L. A new insight into growth mechanism and kinetics of mesoporous silica nanoparticles by in situ small angle X-ray scattering. Langmuir. 2015;31(30):8478–87.CrossRefGoogle Scholar
  35. 35.
    Wuithschick M, Paul B, Bienert R, Sarfraz A, Vainio U, Sztucki M, Kraehnert R, Strasser P, Rademann K, Emmerling F and others. Size-controlled synthesis of colloidal silver nanoparticles based on mechanistic understanding. Chem Mater. 2013;25(23):4679–89.CrossRefGoogle Scholar
  36. 36.
    Varier KM, Gudeppu M, Chinnasamy A, Thangarajan S, Balasubramanian J, Li Y, Gajendran B. Nanoparticles: antimicrobial applications and its prospects. In: Naushad M, Rajendran S, Gracia F, editors. Advanced nanostructured materials for environmental remediation. Cham: Springer International Publishing; 2019. p. 321–55.CrossRefGoogle Scholar
  37. 37.
    Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C. Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnol. 2010;8:1–10.CrossRefGoogle Scholar
  38. 38.
    Chang ZM, Wang Z, Shao D, Yue J, Xing H, Li L, Ge M, Li M, Yan H, Hu H and others. Shape engineering boosts magnetic mesoporous silica nanoparticle-based isolation and detection of circulating tumor cells. ACS Appl Mater Interf 2018;10(13):10656–63.CrossRefGoogle Scholar
  39. 39.
    Singh P, Pandit S, Mokkapati VRSS, Garg A, Ravikumar V, Mijakovic I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci 2018;19(7).CrossRefGoogle Scholar
  40. 40.
    Sharma A, Goyal AK, Rath G. Recent advances in metal nanoparticles in cancer therapy. J Drug Targ. 2018;26(8):617–32.CrossRefGoogle Scholar
  41. 41.
    Dhandapani R, Sethuraman S, Subramanian A. Nanohybrids—cancer theranostics for tiny tumor clusters. J Control Release. 2019;299:21–30.CrossRefGoogle Scholar
  42. 42.
    Muhamad N, Plengsuriyakarn T, Na-Bangchang K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review. Int J Nanomed. 2018;13:3921–35.CrossRefGoogle Scholar
  43. 43.
    Le Goas M, Paquirissamy A, Gargouri D, Fadda G, Testard F, Aymes-Chodur C, Jubeli E, Pourcher T, Cambien B, Palacin S and others. Irradiation effects on polymer-grafted gold nanoparticles for cancer therapy. ACS Appl Biomater. 2019;2(1):144–54.Google Scholar
  44. 44.
    Din MI, Arshad F, Hussain Z, Mukhtar M. Green adeptness in the synthesis and stabilization of copper nanoparticles: catalytic, antibacterial, cytotoxicity, and antioxidant activities. Nanoscale Res Lett. 2017;12.Google Scholar
  45. 45.
    Spencer E, Kolesnikov A, Woodfield B, Ross N. New insights about CuO nanoparticles from inelastic neutron scattering. Nanomaterials. 2019;9(3):312.CrossRefGoogle Scholar
  46. 46.
    Spinozzi F, Ceccone G, Moretti P, Campanella G, Ferrero C, Combet S, Ojea-Jimenez I, Ghigna P. Structural and thermodynamic properties of nanoparticle-protein complexes: a combined SAXS and SANS study. Langmuir. 2017;33(9):2248–56.CrossRefGoogle Scholar
  47. 47.
    Esmaeilzadeh P, Köwitsch A, Liedmann A, Menzel M, Fuhrmann B, Schmidt G, Klehm J, Groth T. Stimuli-responsive multilayers based on thiolated polysaccharides that affect fibroblast cell adhesion. ACS Appl Mater Interf. 2018;10(10):8507–18.CrossRefGoogle Scholar
  48. 48.
    Bohn DR, Lobato FO, Thill AS, Steffens L, Raabe M, Donida B, Vargas CR, Moura DJ, Bernardi F, Poletto F. Artificial cerium-based proenzymes confined in lyotropic liquid crystals: synthetic strategy and on-demand activation. J Mater Chem B. 2018;6(30):4920–8.CrossRefGoogle Scholar
  49. 49.
    Xu LC, Siedlecki CA. Protein adsorption, platelet adhesion, and bacterial adhesion to polyethylene-glycol-textured polyurethane biomaterial surfaces. J Biomed Mater Res. 2017;105(3):668–78.CrossRefGoogle Scholar
  50. 50.
    Christo SN, Bachhuka A, Diener KR, Mierczynska A, Hayball JD, Vasilev K. The role of surface nanotopography and Chemistry on primary neutrophil and macrophage cellular responses. Adv Healthcare Mater. 2016;5(8):956–65.CrossRefGoogle Scholar
  51. 51.
    Wang PY, Bennetsen DT, Foss M, Ameringer T, Thissen H, Kingshott P. Modulation of human mesenchymal stem cell behavior on ordered tantalum nanotopographies fabricated using colloidal lithography and glancing angle deposition. ACS Appl Mater Interf. 2015;7(8):4979–89.CrossRefGoogle Scholar
  52. 52.
    Batista P, Castro PM, Madureira AR, Sarmento B, Pintado M. Recent insights in the use of nanocarriers for the oral delivery of bioactive proteins and peptides. Peptides. 2018;101:112–23.CrossRefGoogle Scholar
  53. 53.
    Li SK, Liu ZT, Li JY, Chen AY, Chai YQ, Yuan R, Zhuo Y. Enzyme-free target recycling and double-output amplification system for electrochemiluminescent assay of Mucin 1 with MoS2 nanoflowers as Co-reaction accelerator. ACS Appl Mat Interf. 2018;10(17):14483–90.CrossRefGoogle Scholar
  54. 54.
    Sezen H, Suzer S. XPS for chemical- and charge-sensitive analyses. Thin Solid Films. 2013;534:1–11.CrossRefGoogle Scholar
  55. 55.
    Watts JF, Wolstenholme J. Electron spectroscopy: some basic concepts. An introduction to surface analysis by XPS and AES. Chichester, UK: Wiley & Sons, Ltd.; 2003. pp. 1–15.Google Scholar
  56. 56.
    Hofmann S. Introduction and outline. Auger- and X-ray photoelectron spectroscopy in materials science: a user-oriented guide. Berlin, Heidelberg: Springer; 2013. pp. 1–10.Google Scholar
  57. 57.
    Aziz M, Ismail AF. X-ray photoelectron spectroscopy (XPS). Elsevier; 2017. pp. 81–93.Google Scholar
  58. 58.
    Seah MP, Dench WA. Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surf Interf Anal. 1979;1(1):2–11.CrossRefGoogle Scholar
  59. 59.
    Fenton OS, Olafson KN, Pillai PS, Mitchell MJ, Langer R. Advances in biomaterials for drug delivery. Adv Mater. 2018;30(29):1–29.CrossRefGoogle Scholar
  60. 60.
    Pokhriyal S, Gakkhar N, Bhatia A. Biomedical applications and toxicological effects of nanomaterials: a general approach. J Mat Sci Surf Eng. 2018;6(3):811–6.Google Scholar
  61. 61.
    Sun Y, Fu Y, Luo J, Wang R, Dong Y. Silk fibroin biomaterial-functionalized carbon nanotubes for high water dispersibility and promising biomedical applications. Textile Res J. 2019;89(7):1144–52.CrossRefGoogle Scholar
  62. 62.
    Pawlik A, Socha RP, Hubalek Kalbacova M, Sulka GD. Surface modification of nanoporous anodic titanium dioxide layers for drug delivery systems and enhanced SAOS-2 cell response. Coll Surf B. 2018;171:58–66.CrossRefGoogle Scholar
  63. 63.
    Lim WS, Chen K, Chong TW, Xiong GM, Birch WR, Pan J, Lee BH, Er PS, Salvekar AV, Venkatraman SS and others. A bilayer swellable drug-eluting ureteric stent: Localized drug delivery to treat Urothelial diseases. Biomaterials 2018;165:25–38.CrossRefGoogle Scholar
  64. 64.
    Mitić Ž, Stolić A, Stojanović S, Najman S, Ignjatović N, Nikolić G, Trajanović M. Instrumental methods and techniques for structural and physicochemical characterization of biomaterials and bone tissue: a review. Mater Sci Eng C. 2017;79:930–49.CrossRefGoogle Scholar
  65. 65.
    Ajdnik U, Zemljič LF, Bračič M, Maver U, Plohl O, Rebol J. Functionalisation of silicone by drug-embedded chitosan nanoparticles for potential applications in otorhinolaryngology. Materials. 2019;16(6):1–20.Google Scholar
  66. 66.
    He J, Chen J, Hu G, Wang L, Zheng J, Zhan J, Zhu Y, Zhong C, Shi X, Liu S and others. Immobilization of an antimicrobial peptide on silicon surface with stable activity by click chemistry. J Mater Chem B 2017;6(1):68–74.CrossRefGoogle Scholar
  67. 67.
    Duta L, Ristoscu C, Stan GE, Husanu MA, Besleaga C, Chifiriuc MC, Lazar V, Bleotu C, Miculescu F, Mihailescu N and others. New bio-active, antimicrobial and adherent coatings of nanostructured carbon double-reinforced with silver and silicon by Matrix-Assisted Pulsed Laser Evaporation for medical applications. Appl Surf Sci. 2018;441:871–83.CrossRefGoogle Scholar
  68. 68.
    Chia X, Fojtu M, Masar M. Black Phosphorus nanoparticles potentiate the anticancer effect of Oxaliplatin in ovarian cancer cell line. Adv Funct Mater. 2017;1701955(36):1–7.Google Scholar
  69. 69.
    Todea M, Simon S, Simon V, Eniu D. XPS investigation of new solid forms of 5-fluorouracil with piperazine. J Mol Struct. 2018.Google Scholar
  70. 70.
    Calvin S. XAFS for everyone. Boca Raton: Taylor & Francis Group; 2013. p. 459.CrossRefGoogle Scholar
  71. 71.
    Charlet L, Manceau A. Chapter 4: Structure, formation and reactivity of hydrous oxide particles; insights from X-ray absorption spectroscopy. In: Buffle J, van Leeuwen HP, editors. Environmental particles 2. Boca Raton: CRC Press; 1993. p. 118–64.Google Scholar
  72. 72.
    Frenkel AI. Applications of extended X-ray absorption fine-structure spectroscopy to studies of bimetallic nanoparticle catalysts. Chem Soc Rev. 2012;41(24):8163–78.CrossRefGoogle Scholar
  73. 73.
    Frenkel AI, Wang Q, Sanchez SI, Small MW, Nuzzo RG. Short range order in bimetallic nanoalloys: an extended X-ray absorption fine structure study. J Chem Phys. 2013;138(6):064202.CrossRefGoogle Scholar
  74. 74.
    Faraci G. Cluster characterization by EXAFS spectroscopy. In: AIP 2002; 2002. pp. 173–177.Google Scholar
  75. 75.
    Koningsberger DC, Mojet BL, van Dorssen GE, Ramaker DE. XAFS spectroscopy; fundamental principles and data analysis. Topics Catal. 2000;10(3–4):143–55.CrossRefGoogle Scholar
  76. 76.
    Azharuddin M, Zhu GH, Das D, Ozgur E, Uzun L, Turner APF, Patra HK. A repertoire of biomedical applications of noble metal nanoparticles. Chem Comm 2019:6964–96.CrossRefGoogle Scholar
  77. 77.
    Kravtsova AN, Guda LV, Polozhentsev OE, Pankin IA, Soldatov AV. Xanes specroscopic diagnostics of the 3D local atomic structure of nanostructured materials. J Struct Chem. 2018;59(7):1691–706.CrossRefGoogle Scholar
  78. 78.
    Rubina MS, Said-Galiev EE, Naumkin AV, Shulenina AV, Belyakova OA, Vasil’kov AY. Preparation and characterization of biomedical collagen–chitosan scaffolds with entrapped ibuprofen and silver nanoparticles. Pol Eng Sci. 2019:1–9.Google Scholar
  79. 79.
    Mdlovu NV, Mavuso FA, Lin KS, Chang TW, Chen Y, Wang SSS, Wu CM, Mdlovu NB, Lin YS. Iron oxide-pluronic F127 polymer nanocomposites as carriers for a doxorubicin drug delivery system. Coll Surf A. 2018;2019(562):361–9.Google Scholar
  80. 80.
    Su FX, Zhao X, Dai C, Li YJ, Yang CX, Yan XP. A multifunctional persistent luminescent nanoprobe for imaging guided dual-stimulus responsive and triple-synergistic therapy of drug resistant tumor cells. Chem Comm. 2019;55(36):5283–6.CrossRefGoogle Scholar
  81. 81.
    Lima TARM, Valerio MEG. X-ray absorption fine structure spectroscopy and photoluminescence study of multifunctional europium (III)-doped hydroxyapatite in the presence of cationic surfactant medium. J Luminescence 2018;201(Iii):70–76.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ricardo A. Zamora
    • 1
  • Cristián Gutiérrez-Cerón
    • 1
  • Jesum Alves Fernandes
    • 2
  • Gabriel Abarca
    • 3
    Email author
  1. 1.Facultad de Química y BiologíaUniversidad de Santiago de ChileSantiagoChile
  2. 2.School of ChemistryUniversity of NottinghamNottinghamUK
  3. 3.Facultad de CienciasCentro de Nanotecnología Aplicada, Universidad MayorSantiagoChile

Personalised recommendations