Synthesis and Characterization of Nanomaterials for Biomedical Applications

  • Natalia L. PacioniEmail author
  • M. Andrea Molina Torres
  • Rodrigo N. Núñez


This chapter aims to provide a critical overview of available synthetic methodologies for engineered nanomaterials for biomedical uses. We cover different kinds of nanoparticles with a focus on examples that have proven biocompatibility. Also, we included a summary of techniques and procedures for nanoparticle characterization. Finally, we discuss the remaining challenges in the preparation of nanomaterials for biomedicine.



We would like to thank to all the researchers whose cited work has made possible this chapter. Our deep gratitude to the CONICET and SECyT-UNC for financial support. N.L.P. is a research member of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) of Argentine. R.N.N. and M.A.M.T. are grateful recipients of graduated fellowships from CONICET.


All authors have read and approved the final version.


  1. 1.
    Wagner V, Dullaart A, Bock A-K, Zweck A. The emerging nanomedicine landscape. Nat Biotechnol. 2006;24(10):1211–7.CrossRefGoogle Scholar
  2. 2.
    Aguilar ZP. Nanomaterials for medical applications. Waltham, USA: Elsevier Ltd; 2013. p. 461.Google Scholar
  3. 3.
    Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med. 2016;1(1):10–29.CrossRefGoogle Scholar
  4. 4.
    Mclaughlin S, Podrebarac J, Ruel M, Suuronen E, McNeill B, Alarcon E. Nano-engineered biomaterials for tissue regeneration: what has been achieved so far? Front Mater. 2016;3:67435.CrossRefGoogle Scholar
  5. 5.
    Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33(10):2373–87.CrossRefGoogle Scholar
  6. 6.
    Ventola CL. Progress in nanomedicine: approved and investigational nanodrugs. PT. 2017;42(12):742–55.Google Scholar
  7. 7.
    Hornyak GL, Dutta J, Tibbals HF, Rao AK. Introduction to nanoscience. Boca Raton: CRC Press; 2008.CrossRefGoogle Scholar
  8. 8.
    Pacioni NL, Borsarelli CD, Rey V, Veglia AV. Synthetic routes for the preparation of silver nanoparticles. A mechanistic perspective. In: Alarcón EI, Griffith M, Udekwu KI, editors. Silver nanoparticles applications. Switzerland: Springer; 2015. p. 13–46.CrossRefGoogle Scholar
  9. 9.
    Hu Y, Mignani S, Majoral J-P, Shen M, Shi X. Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy. Chem Soc Rev. 2018;47(5):1874–900.CrossRefGoogle Scholar
  10. 10.
    Song C, Sun W, Xiao Y, Shi X. Ultrasmall iron oxide nanoparticles: synthesis, surface modification, assembly, and biomedical applications. Drug Discov Today. 2019;24(3):835–44.CrossRefGoogle Scholar
  11. 11.
    Yu WW, Falkner JC, Yavuz CT, Colvin VL. Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. Chem Commun. 2004;20:2306.CrossRefGoogle Scholar
  12. 12.
    Xie J, Peng S, Brower N, Pourmand N, Wang SX, Sun S. One-pot synthesis of monodisperse iron oxide nanoparticles for potential biomedical applications. Pure Appl Chem. 2006;78(5):1003–14.CrossRefGoogle Scholar
  13. 13.
    Han J, Kim B, Shin J-Y, Ryu S, Noh M, Woo J, Park J-S, Lee Y, Lee N, Hyeon T, Choi D. Iron oxide nanoparticle-mediated development of cellular gap junction crosstalk to improve mesenchymal stem cells’ therapeutic efficacy for myocardial infarction. ACS Nano. 2015;9(3):2805–19.CrossRefGoogle Scholar
  14. 14.
    Xu H, Aguilar ZP, Yang L, Kuang M, Duan H, Xiong Y, Wei H, Wang A. Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood. Biomaterials. 2011;32(36):9758–65.CrossRefGoogle Scholar
  15. 15.
    Gao X, Cui Y, Levenson RM, Chung LWK, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004;22(8):969–76.CrossRefGoogle Scholar
  16. 16.
    Segal I, Zablotskaya A, Lukevics E, Maiorov M, Zablotsky D, Blums E, Mishnev A, Georgieva R, Shestakova I, Gulbe A. Preparation and cytotoxic properties of goethite-based nanoparticles covered with decyldimethyl(dimethylaminoethoxy) silane methiodide. Appl Organomet Chem. 2010;24(3):193–7.CrossRefGoogle Scholar
  17. 17.
    Lunin AV, Kolychev EL, Mochalova EN, Cherkasov VR, Nikitin MP. Synthesis of highly-specific stable nanocrystalline goethite-like hydrous ferric oxide nanoparticles for biomedical applications by simple precipitation method. J Colloid Interface Sci. 2019;541:143–9.CrossRefGoogle Scholar
  18. 18.
    Cobley C, Chen J, Cho E, Wang L, Xia Y. Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem Soc Rev. 2011;40(1):44.CrossRefGoogle Scholar
  19. 19.
    Alarcón EI, Griffith M, Udekwu K, editors. Silver nanoparticle applications. In the fabrication and design of medical and biosensing devices. Switzerland: Springer International Publishing; 2015.Google Scholar
  20. 20.
    Hosoyama K, Ahumada M, McTiernan CD, Bejjani J, Variola F, Ruel M, Xu B, Liang W, Suuronen EJ, Alarcon EI. Multi-functional thermo-crosslinkable collagen-metal nanoparticle composites for tissue regeneration: nanosilver vs. nanogold. RSC Adv. 2017;7(75):47704–8.CrossRefGoogle Scholar
  21. 21.
    Beik J, Khateri M, Khosravi Z, Kamrava SK, Kooranifar S, Ghaznavi H, Shakeri-Zadeh A. Gold nanoparticles in combinatorial cancer therapy strategies. Coord Chem Rev. 2019;387:299–324.CrossRefGoogle Scholar
  22. 22.
    Duncan B, Kim C, Rotello VM. Gold nanoparticle platforms as drug and biomacromolecule delivery systems. J Control Release. 2010;148(1):122–7.CrossRefGoogle Scholar
  23. 23.
    Kim JH, Kim MH, Jo DH, Yu YS, Lee TG, Kim JH. The inhibition of retinal neovascularization by gold nanoparticles via suppression of VEGFR-2 activation. Biomaterials. 2011;32(7):1865–71.CrossRefGoogle Scholar
  24. 24.
    Das S, Sharma M, Saharia D, Sarma KK, Sarma MG, Borthakur BB, Bora U. In vivo studies of silk based gold nano-composite conduits for functional peripheral nerve regeneration. Biomaterials. 2015;62:66–75.CrossRefGoogle Scholar
  25. 25.
    Gitanjali A, Brahmkhatri VP, Atreya HS. Nanomaterial based magnetic resonance imaging of cancer. J Indian Inst Sci. 2014;94(4):423–53.Google Scholar
  26. 26.
    Liu X, Lee P-Y, Ho C-M, Lui VCH, Chen Y, Che C-M, Tam PKH, Wong KKY. Silver nanoparticles mediate differential responses in keratinocytes and fibroblasts during skin wound healing. Chem Med Chem. 2010;5(3):468–75.CrossRefGoogle Scholar
  27. 27.
    Tian J, Wong KKY, Ho C-M, Lok C-N, Yu W-Y, Che C-M, Chiu J-F, Tam PKH. Topical delivery of silver nanoparticles promotes wound healing. Chem Med Chem. 2007;2(1):129–36.CrossRefGoogle Scholar
  28. 28.
    Alarcon E, Vulesevic B, Argawal A, Ross A, Bejjani P, Podrebarac J, Ravichandran R, Phopase J, Suuronen E, Griffith M. Coloured cornea replacements with anti-infective properties: expanding the safe use of silver nanoparticles in regenerative medicine. Nanoscale. 2016;8(12):6484–9.CrossRefGoogle Scholar
  29. 29.
    Saha K, Agasti S, Kim C, Li X, Rotello V. Gold nanoparticles in chemical and biological sensing. Chem Rev. 2012;112(5):2739–79.CrossRefGoogle Scholar
  30. 30.
    Jones M, Osberg K, Macfarlane R, Langille M, Mirkin C. Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem Rev. 2011;111:3736–827.CrossRefGoogle Scholar
  31. 31.
    Ma N, Jiang Y-W, Zhang X, Wu H, Myers JN, Liu P, Jin H, Gu N, He N, Wu F-G, Chen Z. Enhanced radiosensitization of gold nanospikes via hyperthermia in combined cancer radiation and photothermal therapy. ACS Appl Mater Interfaces. 2016;8(42):28480–94.CrossRefGoogle Scholar
  32. 32.
    Zhang YS, Wang Y, Wang L, Wang Y, Cai X, Zhang C, Wang LV, Xia Y. Labeling human mesenchymal stem cells with gold nanocages for in vitro and in vivo tracking by two-photon microscopy and photoacoustic microscopy. Theranostics. 2013;3(8):532–43.CrossRefGoogle Scholar
  33. 33.
    Park J, Park J, Ju EJ, Park SS, Choi J, Lee JH, Lee KJ, Shin SH, Ko EJ, Park I, Kim C. Multifunctional hollow gold nanoparticles designed for triple combination therapy and CT imaging. J Control Release. 2015;207:77–85.CrossRefGoogle Scholar
  34. 34.
    Al Zaki A, Joh D, Cheng Z, De Barros ALB, Kao G, Dorsey J, Tsourkas A. Gold-loaded polymeric micelles for computed tomography-guided radiation therapy treatment and radiosensitization. ACS Nano. 2014;8(1):104–12.CrossRefGoogle Scholar
  35. 35.
    Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. Chem Commun. 1994;7:801–2.CrossRefGoogle Scholar
  36. 36.
    Hainfeld JF, Lin L, Slatkin DN, Avraham Dilmanian F, Vadas TM, Smilowitz HM. Gold nanoparticle hyperthermia reduces radiotherapy dose. Nanomedicine. 2014;10(8):1609–17.CrossRefGoogle Scholar
  37. 37.
    Das RK, Borthakur BB, Bora U. Green synthesis of gold nanoparticles using ethanolic leaf extract of Centella asiatica. Mater Lett. 2010;64(13):1445–7.CrossRefGoogle Scholar
  38. 38.
    Li P, Shi Y-W, Li B-X, Xu W-C, Shi Z-L, Zhou C, Fu S. Photo-thermal effect enhances the efficiency of radiotherapy using Arg-Gly-Asp peptides-conjugated gold nanorods that target αvβ3 in melanoma cancer cells. J Nanobiotechnol. 2015;13(52).Google Scholar
  39. 39.
    Pan B, Ao L, Gao F, Tian H, He R, Cui D. End-to-end self-assembly and colorimetric characterization of gold nanorods and nanospheres via oligonucleotide hybridization. Nanotechnology. 2005;16(9):1776–80.CrossRefGoogle Scholar
  40. 40.
    Jin R, Cao Y, Mirkin CA, Kelly KL, Schatz GC, Zheng JG. Photoinduced conversion of silver nanospheres to nanoprisms. Science. 2001;294(5548):1901–3.CrossRefGoogle Scholar
  41. 41.
    Alarcon E, Udekwu K, Skog M, Pacioni N, Stamplecoskie K, González-Béjar M, Polisetti N, Wickham A, Richter-Dahlfors A, Griffith M, Scaiano JC. The biocompatibility and antibacterial properties of collagen-stabilized, photochemically prepared silver nanoparticles. Biomaterials. 2012;33(19):4947–56.CrossRefGoogle Scholar
  42. 42.
    Scaiano J, Netto-Ferreira J, Alarcon E, Billone P, Alejo C, Crites C, Decan M, Fasciani C, González-Béjar M, Hallett-Tapley G, Grenier M, McGilvray K, Pacioni N, Pardoe A, René-Boisneuf L, Schwartz-Narbonne R, Silvero M, Stamplecoskie K, Wee T. Tuning plasmon transitions and their applications in organic photochemistry. Pure Appl Chem. 2011;83(4):913–30.CrossRefGoogle Scholar
  43. 43.
    Stamplecoskie K, Scaiano J. Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles. J Am Chem Soc. 2010;132(6):1825–7.CrossRefGoogle Scholar
  44. 44.
    Ghosal K, Ghosh A. Carbon dots: the next generation platform for biomedical applications. Mater Sci Eng C. 2019;96:887–903.CrossRefGoogle Scholar
  45. 45.
    Tran PA, Zhang L, Webster TJ. Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv Drug Deliv Rev. 2009;61(12):1097–114.CrossRefGoogle Scholar
  46. 46.
    Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80(6):1339–1339.CrossRefGoogle Scholar
  47. 47.
    Yang D, Li T, Xu M, Gao F, Yang J, Yang Z, Le W. Graphene oxide promotes the differentiation of mouse embryonic stem cells to dopamine neurons. Nanomedicine. 2014;9(16):2445–55.CrossRefGoogle Scholar
  48. 48.
    Park J, Kim B, Han J, Oh J, Park S, Ryu S, Jung S, Shin J-Y, Lee BS, Hong BH, Choi D. Graphene oxide flakes as a cellular adhesive: prevention of reactive oxygen species mediated death of implanted cells for cardiac repair. ACS Nano. 2015;9(5):4987–99.CrossRefGoogle Scholar
  49. 49.
    Park J, Kim YS, Ryu S, Kang WS, Park S, Han J, Jeong HC, Hong BH, Ahn Y, Kim B-S. Graphene potentiates the myocardial repair efficacy of mesenchymal stem cells by stimulating the expression of angiogenic growth factors and gap junction protein. Adv Funct Mater. 2015;25(17):2590–600.CrossRefGoogle Scholar
  50. 50.
    Sarkar K, Madras G, Chatterjee K. Dendron conjugation to graphene oxide using click chemistry for efficient gene delivery. RSC Adv. 2015;5(62):50196–211.CrossRefGoogle Scholar
  51. 51.
    Jakus AE, Secor EB, Rutz AL, Jordan SW, Hersam MC, Shah RN. Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano. 2015;9(4):4636–48.CrossRefGoogle Scholar
  52. 52.
    Jelinek R. Carbon-dot synthesis. In: Carbon quantum dots. Cham: Springer International Publishing; 2017. p. 5–27.Google Scholar
  53. 53.
    Xu Q, Kuang T, Liu Y, Cai L, Peng X, Sreenivasan Sreeprasad T, Zhao P, Yu Z, Li N. Heteroatom-doped carbon dots: synthesis, characterization, properties, photoluminescence mechanism and biological applications. J Mater Chem B. 2016;4(45):7204–19.CrossRefGoogle Scholar
  54. 54.
    Zhang J, Yu S-H. Carbon dots: large-scale synthesis, sensing and bioimaging. Mater Today. 2016;19(7):382–93.CrossRefGoogle Scholar
  55. 55.
    Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, Wang H, Yang B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem. 2013;125(14):4045–9.CrossRefGoogle Scholar
  56. 56.
    Zhu P, Lyu D, Shen PK, Wang X. Sulfur-rich carbon dots as a novel fluorescent imaging probe for distinguishing the pathological changes of mouse-bone cells. J Lumin. 2019;207:620–5.CrossRefGoogle Scholar
  57. 57.
    Arsalani N, Nezhad-Mokhtari P, Jabbari E. Microwave-assisted and one-step synthesis of PEG passivated fluorescent carbon dots from gelatin as an efficient nanocarrier for methotrexate delivery. Artif Cells Nanomed Biotechnol. 2019;47(1):540–7.CrossRefGoogle Scholar
  58. 58.
    Kargozar S, Baino F, Hoseini SJ, Hamzehlou S, Darroudi M, Verdi J, Hasanzadeh L, Kim H-W, Mozafari M. Biomedical applications of nanoceria: new roles for an old player. Nanomedicine. 2018;13(23):3051–69.CrossRefGoogle Scholar
  59. 59.
    Lee SS, Zhu H, Contreras EQ, Prakash A, Puppala HL, Colvin VL. High temperature decomposition of cerium precursors to form ceria nanocrystal libraries for biological applications. Chem Mater. 2012;24(3):424–32.CrossRefGoogle Scholar
  60. 60.
    Charbgoo F, Ahmad M, Darroudi M. Cerium oxide nanoparticles: green synthesis and biological applications. Int J Nanomed. 2017;12:1401–13.CrossRefGoogle Scholar
  61. 61.
    Sisubalan N, Ramkumar VS, Pugazhendhi A, Karthikeyan C, Indira K, Gopinath K, Hameed ASH, Basha MHG. ROS-mediated cytotoxic activity of ZnO and CeO2 nanoparticles synthesized using the Rubia cordifolia L. leaf extract on MG-63 human osteosarcoma cell lines. Environ Sci Pollut Res Int. 2018;25(11):10482–92.CrossRefGoogle Scholar
  62. 62.
    Sulthana S, Banerjee T, Kallu J, Vuppala SR, Heckert B, Naz S, Shelby T, Yambem O, Santra S. Combination therapy of NSCLC using Hsp90 inhibitor and doxorubicin carrying functional nanoceria. Mol Pharm. 2017;14(3):875–84.CrossRefGoogle Scholar
  63. 63.
    Kwon HJ, Cha M-Y, Kim D, Kim DK, Soh M, Shin K, Hyeon T, Mook-Jung I. Mitochondria-targeting ceria nanoparticles as antioxidants for alzheimer’s disease. ACS Nano. 2016;10(2):2860–70.CrossRefGoogle Scholar
  64. 64.
    Nethi SK, Nanda HS, Steele TW, Patra CR, Chen G. Functionalized nanoceria exhibit improved angiogenic properties. J Mater Chem B. 2017;5:9371–83.CrossRefGoogle Scholar
  65. 65.
    Hijaz M, Das S, Mert I, Gupta A, Al-Wahab Z, Tebbe C, Dar S, Chhina J, Giri S, Munkarah A, Seal S. Folic acid tagged nanoceria as a novel therapeutic agent in ovarian cancer. BMC Cancer 2016;16(1).Google Scholar
  66. 66.
    Núñez R, Veglia A, Pacioni N. Improving reproducibility between batches of silver nanoparticles using an experimental design approach. Microchem J. 2018;141:110–7.CrossRefGoogle Scholar
  67. 67.
    Pacioni NL. Metrology for metal nanoparticles. In: Martínez LMT, Kharissova OV, Kharisov BI, editors. Handbook of ecomaterials. Cham: Springer International Publishing; 2019. p. 2327–42.CrossRefGoogle Scholar
  68. 68.
    Huang Y, Mao K, Zhang B, Zhao Y. Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual target-specific drug delivery and MRI in cancer theranostics. Mater Sci Eng C. 2017;70:763–71.CrossRefGoogle Scholar
  69. 69.
    Ali AAA, Hsu F-T, Hsieh C-L, Shiau C-Y, Chiang C-H, Wei Z-H, Chen C-Y, Huang H-S. Erlotinib-conjugated iron oxide nanoparticles as a smart cancer-targeted theranostic probe for MRI. Sci Rep. 2016;6(36650).Google Scholar
  70. 70.
    Li Z, Yi PW, Sun Q, Lei H, Li Zhao H, Zhu ZH, Smith SC, Lan MB, Lu GQM. Ultrasmall water-soluble and biocompatible magnetic iron oxide nanoparticles as positive and negative dual contrast agents. Adv Funct Mater. 2012;22(11):2387–93.CrossRefGoogle Scholar
  71. 71.
    Ma D, Chen J, Luo Y, Wang H, Shi X. Zwitterion-coated ultrasmall iron oxide nanoparticles for enhanced T1-weighted magnetic resonance imaging applications. J Mater Chem B. 2017;5:7267–73.CrossRefGoogle Scholar
  72. 72.
    Yin T, Zhang Q, Wu H, Gao G, Shapter JG, Shen Y, He Q, Huang P, Qi W, Cui D. In vivo high-efficiency targeted photodynamic therapy of ultra-small Fe3O4@polymer-NPO/PEG-Glc@Ce6 nanoprobes based on small size effect. NPG Asia Mater. 2017;9(5):e383.CrossRefGoogle Scholar
  73. 73.
    Marino A, Tonda-Turo C, De Pasquale D, Ruini F, Genchi G, Nitti S, Cappello V, Gemmi M, Mattoli V, Ciardelli G, Ciofani G. Gelatin/nanoceria nanocomposite fibers as antioxidant scaffolds for neuronal regeneration. Biochim Biophys Acta Gen Subj. 2017;1861(2):386–95.CrossRefGoogle Scholar
  74. 74.
    Vieira S, Vial S, Maia FR, Carvalho M, Reis RL, Granja PL, Oliveira JM. Gellan gum-coated gold nanorods: an intracellular nanosystem for bone tissue engineering. RSC Adv. 2015;5(95):77996–8005.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Natalia L. Pacioni
    • 1
    • 2
    Email author
  • M. Andrea Molina Torres
    • 1
    • 2
  • Rodrigo N. Núñez
    • 1
    • 2
  1. 1.Departamento de Química Orgánica, Facultad de Ciencias QuímicasUniversidad Nacional de CórdobaCórdobaArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), INFIQCCórdobaArgentina

Personalised recommendations