Advertisement

Clinician Unconscious Bias and Its Impact on Trauma Patients

  • Nidhi Rhea UdyavarEmail author
  • Ali Salim
  • Adil H. Haider
Chapter
  • 41 Downloads

Abstract

In the effort to understand the persistence of healthcare inequities, even in the high-stakes field of trauma, this chapter examines the personal ethos of the clinicians involved in the care of injured patients. It describes the cognitive and behavioral science basis of unconscious bias or the socially driven automated, implicit preferences for specific racial/ethnic groups. The authors describe how the unique features of trauma care, such as the diverse patient population and the high cognitive load associated with caring for acutely and critically ill patients, can predispose to the formation of unconscious biases. The current literature on the impact of unconscious bias on clinical decision-making in trauma and acute care surgery is reviewed; research has yet to uncover a clear relationship between unconscious bias and clinical decision-making, although there are other causal pathways that have yet to be examined. We conclude by proposing educational and cognitive strategies for reducing surgeons’ unconscious biases, including cross-cultural communication training, that aim to better equip surgeons to care for injured patients from all racial/ethnic and social backgrounds.

Keywords

Unconscious bias Implicit bias Racial disparities Healthcare inequities Cultural competency Implicit association test Burnout Socioeconomic disparities Stereotype threat Minority health 

References

  1. Biernat, M., & Manis, M. (1994). Shifting standards and stereotype-based judgments. Journal of Personality and Social Psychology, 66(1), 5–20.CrossRefGoogle Scholar
  2. Blair, I. V., Steiner, J. F., Fairclough, D. L., Hanratty, R., Price, D. W., Hirsh, H. K., et al. (2013). Clinicians’ implicit ethnic/racial bias and perceptions of care among Black and Latino patients. Annals of Family Medicine, 11(1), 43–52.  https://doi.org/10.1370/afm.1442CrossRefPubMedPubMedCentralGoogle Scholar
  3. Burgess, D., Van Ryn, M., Dovidio, J., & Saha, S. (2007). Reducing racial bias among health care providers: Lessons from social-cognitive psychology. Journal of General Internal Medicine, 22(6), 882–887.  https://doi.org/10.1007/s11606-007-0160-1CrossRefPubMedPubMedCentralGoogle Scholar
  4. Burgess, D. J., Warren, J., Phelan, S., Dovidio, J., & van Ryn, M. (2010). Stereotype threat and health disparities: What medical educators and future physicians need to know. Journal of General Internal Medicine, 25(Suppl 2), S169–S177.  https://doi.org/10.1007/s11606-009-1221-4CrossRefPubMedGoogle Scholar
  5. Changoor, N. R., Udyavar, N. R., Morris, M. A., Torain, M., Mullen, J. T., Kent, T. S., et al. (2019). Surgeons’ perceptions toward providing care for diverse patients: The need for cultural dexterity training. Annals of Surgery, 269(2), 275–282.  https://doi.org/10.1097/sla.0000000000002560CrossRefPubMedGoogle Scholar
  6. Chapman, E. N., Kaatz, A., & Carnes, M. (2013). Physicians and implicit bias: How doctors may unwittingly perpetuate health care disparities. Journal of General Internal Medicine, 28(11), 1504–1510.  https://doi.org/10.1007/s11606-013-2441-1CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cooper, L. A., Roter, D. L., Carson, K. A., Beach, M. C., Sabin, J. A., Greenwald, A. G., et al. (2012). The associations of clinicians’ implicit attitudes about race with medical visit communication and patient ratings of interpersonal care. American Journal of Public Health, 102(5), 979–987.  https://doi.org/10.2105/AJPH.2011.300558CrossRefPubMedPubMedCentralGoogle Scholar
  8. Devine, P. G. (1989). Stereotypes and prejudice: Their automatic and controlled components. Journal of Personality and Social Psychology, 56(1), 5–18.  https://doi.org/10.1037/0022-3514.56.1.5CrossRefGoogle Scholar
  9. Devine, P. G., Forscher, P. S., Austin, A. J., & Cox, W. T. L. (2012). Long-term reduction in implicit race bias: A prejudice habit-breaking intervention. Journal of Experimental Social Psychology, 48(6), 1267–1278.CrossRefGoogle Scholar
  10. Dimou, F. M., Eckelbarger, D., & Riall, T. S. (2016). Surgeon burnout: A systematic review. Journal of the American College of Surgeons, 222(6), 1230–1239.CrossRefGoogle Scholar
  11. Esposito, T. J., Maier, R. V., Rivara, F. P., & Carrico, C. J. (1991). Why surgeons prefer not to care for trauma patients. Archives of Surgery, 126(3), 292–297.  https://doi.org/10.1001/archsurg.1991.01410270032005CrossRefPubMedGoogle Scholar
  12. Green, A. R., Carney, D. R., Pallin, D. J., Ngo, L. H., Raymond, K. L., Iezzoni, L. I., et al. (2007). Implicit bias among physicians and its prediction of thrombolysis decisions for black and white patients. Journal of General Internal Medicine, 22(9), 1231–1238.  https://doi.org/10.1007/s11606-007-0258-5CrossRefPubMedPubMedCentralGoogle Scholar
  13. Greenwald, A. G., McGhee, D. E., & Schwartz, J. L. (1998). Measuring individual differences in implicit cognition: The implicit association test. Journal of Personality and Social Psychology, 74(6), 1464–1480.  https://doi.org/10.1037/0022-3514.74.6.1464CrossRefPubMedGoogle Scholar
  14. Haider, A. H., Schneider, E. B., Sriram, N., Dossick, D. S., Scott, V. K., Swoboda, S. M., et al. (2014). Unconscious race and class bias: Its association with decision making by trauma and acute care surgeons. Journal of Trauma and Acute Care Surgery, 77(3), 409–416.  https://doi.org/10.1097/TA.0000000000000392CrossRefPubMedGoogle Scholar
  15. Haider, A. H., Schneider, E. B., Sriram, N., Dossick, D. S., Scott, V. K., Swoboda, S. M., et al. (2015). Unconscious race and social class bias among acute care surgical clinicians and clinical treatment decisions. JAMA Surgery, 150(5), 457–464.  https://doi.org/10.1001/jamasurg.2014.4038CrossRefPubMedGoogle Scholar
  16. Haider, A. H., Schneider, E. B., Sriram, N., Scott, V. K., Swoboda, S. M., Zogg, C. K., et al. (2015). Unconscious race and class biases among registered nurses: Vignette-based study using implicit association testing. Journal of the American College of Surgeons, 220(6), 1077–1086.e3.  https://doi.org/10.1016/j.jamcollsurg.2015.01.065CrossRefPubMedGoogle Scholar
  17. Havranek, E. P., Hanratty, R., Tate, C., Dickinson, L. M., Steiner, J. F., Cohen, G., et al. (2012). The effect of values affirmation on race-discordant patient-provider communication. Archives of Internal Medicine, 172(21), 1662–1667.  https://doi.org/10.1001/2013.jamainternmed.258CrossRefPubMedGoogle Scholar
  18. Hodson, G., Dovidio, J. F., & Gaertner, S. L. (2002). Processes in racial discrimination: Differential weighting of conflicting information. Personality and Social Psychology Bulletin, 28(4), 460–471.  https://doi.org/10.1177/0146167202287004CrossRefGoogle Scholar
  19. Isaac, C., Lee, B., & Carnes, M. (2009). Interventions that affect gender bias in hiring: A systematic review. Academic Medicine, 84(10), 1440–1446.  https://doi.org/10.1097/ACM.0b013e3181b6ba00CrossRefPubMedPubMedCentralGoogle Scholar
  20. Johnson, K. J., & Fredrickson, B. L. (2005). ‘We all look the same to me’: Positive emotions eliminate the own-race in face recognition. Psychological Science, 16(11), 875–881.  https://doi.org/10.1111/j.1467-9280.2005.01631.xCrossRefPubMedPubMedCentralGoogle Scholar
  21. Johnson, T. J., Hickey, R. W., Switzer, G. E., Miller, E., Winger, D. G., Nguyen, M., et al. (2016). The impact of cognitive stressors in the emergency department on physician implicit racial bias. Academic Emergency Medicine, 23(3), 297–305.  https://doi.org/10.1111/acem.12901CrossRefPubMedPubMedCentralGoogle Scholar
  22. Moss-Racusin, C. A., Dovidio, J. F., Brescoll, V. L., Graham, M. J., & Handelsman, J. (2012). Science faculty’s subtle gender biases favor male students. Proceedings of the National Academy of Sciences of the United States of America, 109(41), 16474–16479.  https://doi.org/10.1073/pnas.1211286109CrossRefPubMedPubMedCentralGoogle Scholar
  23. Niemeyer, L. O. (1991). Social labeling, stereotyping, and observer bias in workers’ compensation: The impact of provider-patient interaction on outcome. Journal of Occupational Rehabilitation, 1(4), 251–269.  https://doi.org/10.1007/BF01073691CrossRefPubMedGoogle Scholar
  24. Nosek, B. A., Banaji, M., & Greenwald, A. G. (2002). Web-harvested implicit attitudes and beliefs 1. Group Dynamics, 6(1), 1011115.  https://doi.org/10.1037/1089-2699.6.1.101CrossRefGoogle Scholar
  25. Penner, L., Blair, I. V., Albrecht, T. L., & Dovidio, J. F. (2014). Reducing racial health care disparities: A social psychological analysis. Policy Insights From the Behavioral and Brain Sciences, 1(1), 204–212.  https://doi.org/10.1177/2372732214548430CrossRefPubMedPubMedCentralGoogle Scholar
  26. Rudman, L. A., Greenwald, A. G., Mellott, D. S., & Schwartz, J. L. K. (1999). Measuring the automatic components of prejudice: Flexibility and generality of the implicit association test. Social Cognition, 17(4), 437–465.  https://doi.org/10.1521/soco.1999.17.4.437CrossRefGoogle Scholar
  27. Sabin, J. A., & Greenwald, A. G. (2012). The influence of implicit bias on treatment recommendations for 4 common pediatric conditions: Pain, urinary tract infection, attention deficit hyperactivity disorder, and asthma. American Journal of Public Health, 102(5), 988–995.  https://doi.org/10.2105/AJPH.2011.300621CrossRefGoogle Scholar
  28. Udyavar, R., Smink, D. S., Mullen, J. T., Kent, T. S., Green, A., Harlow, A. F., et al. (2018). Qualitative analysis of a cultural dexterity program for surgeons: Feasible, impactful, and necessary. Journal of Surgical Education, 75(5), 1159–1170.  https://doi.org/10.1016/j.jsurg.2018.01.016CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Nidhi Rhea Udyavar
    • 1
    Email author
  • Ali Salim
    • 2
  • Adil H. Haider
    • 3
  1. 1.Center for Surgery and Public HealthBrigham and Women’s HospitalBostonUSA
  2. 2.Divison of Trauma, Burns, and Surgical Critical CareBrigham and Women’s HospitalBostonUSA
  3. 3.Brigham and Women’s Hospital, Center for Surgery and Public HealthBostonUSA

Personalised recommendations