Advertisement

Structure and Phytomass Production of Coastal Geosystems Near Lake Baikal

  • Yulia V. Vanteeva
  • Svetlana V. Solodyankina
Chapter
  • 4 Downloads
Part of the Landscape Series book series (LAEC, volume 26)

Abstract

Landscape structure has an important control over its functions. Landscape functions are treated as the resulting manifestations of the functioning processes in a landscape system of interrelated components: rocks, soil, water, air, and biota. Geosystem concept formulated by Viktor Sochava and factoral-dynamic approach to facies classification elaborated by Adolph Krauklis were applied as a theoretical and methodological framework. Natural landscapes surrounding Lake Baikal provide functions involved in the protection of water quality, water storage, phytomass production, and so forth. The phytomass production function was estimated in four study areas located in different parts of Lake Baikal shore (the east-northern—Barguzin mountain range; the western—the Priol’khon plateau and Olkhinskoe plateau; the southern—part of Khamar-Daban mountain range) and exposed to different degrees of impact. Fieldworks were conducted in summer seasons from 2010 to 2017. For these areas, the landscape maps at local scale were composed based on the landscape approach, fieldwork data, digital elevation model, and remote sensing. Landscape maps were interpreted to evaluate phytomass stock. Interpretation was based on tree phytomass and aboveground herbaceous phytomass measurements for various landscape types. Correlations between landscape attributes and this function were found.

Keywords

Landscape approach Landscape map Factoral-dynamic series of facies Geosystem classification Function of phytomass production 

Notes

Acknowledgments

This study was partially supported by the Russian Foundation for Basic Research (project no. 17-05-00588) and the Russian Geographical Society (project no. 17-05-41020).

References

  1. Austin, M. P. (1976). On non-linear species response models in ordination. Vegetatio, 33(1), 33–41.CrossRefGoogle Scholar
  2. Bastian, O., Grunewald, K., Syrbe, R.-U., et al. (2014). Landscape services: The concept and its practical relevance. Landscape Ecology, 29(9), 1463–1479.CrossRefGoogle Scholar
  3. Bastian, O., Grunewald, K., & Khoroshev, A. V. (2015). The significance of geosystem and landscape concepts for the assessment of ecosystem services: Exemplified in a case study in Russia. Landscape Ecology, 30(7), 1145–1164.CrossRefGoogle Scholar
  4. Catorci, A., Cesaretti, S., & Gatti, R. (2009). Biodiversity conservation: Geosynphytosociology as a tool of analysis and modeling of grassland systems. Hacquetia, 8, 129–146.CrossRefGoogle Scholar
  5. Clements, F. (1949). Dynamics of vegetation. New York: Hafner.CrossRefGoogle Scholar
  6. Christopherson, R. W., & Birkeland, G. H. (2015). Geosystems: An introduction to physical geography (9th ed.). New York: Pearson Education.Google Scholar
  7. Cushman, S. A., & Huettmann, F. (Eds.). (2010). Spatial complexity, informatics and wildlife conservation. New York: Springer.Google Scholar
  8. Davis, W. (1954). Geographical essays. New York: Dover Publications.Google Scholar
  9. Deak, B., Valko, O., Kelemen, A., et al. (2011). Litter and graminoid biomass accumulation suppresses weedy forbs in grassland restoration. Plant Biosystems, 145, 730–737.CrossRefGoogle Scholar
  10. Evans, J. S., & Cushman, S. A. (2009). Gradient modeling of conifer species using random forests. Landscape Ecology, 24(5), 673–683.CrossRefGoogle Scholar
  11. Ellenberg, H. (1996). Vegetation mitteleuropas mit den Alpen in okologischer, dynamischer und historischer sicht (5th Aufl). Stuttgart: Ulmer.Google Scholar
  12. Frolov, A. A. (2015). Geoinformtional mapping of landscape variability (exemplified by Southern Cisbaikalia). Geography and Natural Resources, 36(1), 99–107. (in Russian).CrossRefGoogle Scholar
  13. Haase, G. (1973). Zur ausgleiderung von baumeinheiten der chorischen und regionisen dimensionen – dargestellt an beispielen aus bodengeographie. Petermanns Geographische Mitteilungen, 117(2), 81–90.Google Scholar
  14. Heams, T., Huneman, P., Lecointre, G., et al. (Eds.). (2015). Handbook of evolutionary thinking in the sciences. Dordrecht: Springer.Google Scholar
  15. Isachenko, A. G. (2004). Theory and methodology of geographical science. Moscow: Academia. (in Russian).Google Scholar
  16. Istomina, E. A., Luzhkova, N. M., & Khidekel, V. V. (2016). Birdwatching tourism infrastructure planning in the Ria Formosa Natural Park (Portugal). Geography and Natural Resources, 37(4), 371–378. (in Russian).CrossRefGoogle Scholar
  17. Grunewald, K., Bastian, O., & Drozdov, A. (Eds.). (2014). TEEB-prozesse und okosystem-assessement in Deutschland, Russland und weiteren staaten des nordlichen Eurasiens. Bonn: BfN-Skripten.Google Scholar
  18. Kelemen, A., Torok, P., Valko, O., et al. (2013). Mechanisms shaping plant biomass and species richness: Plant strategies and litter effect in alkali and loess grasslands. Journal of Vegetation Science, 24, 1195–1203.CrossRefGoogle Scholar
  19. Khoroshev, A. V. (2016). Polyscale organization of a geographical landscape. Moscow: KMK. (in Russian).Google Scholar
  20. Khoroshev, A., & Koshcheeva, A. (2009). Landscape ecological approach to hierarchical spatial planning. Terra Spectra Planning Studies, 2(1), 3–11.Google Scholar
  21. Konovalova, T. I., Bessolitsyna, E. P., Vladimirov, I. N., et al. (2005). Landscape-interpretation mapping. Novosibirsk: Nauka. (in Russian).Google Scholar
  22. Krauklis, A. A. (1972). Factoral-dynamic rows of elementary geosystems as a basis for modeling natural regions. In International Geography, Vol. 2 (pp. 960–963). Montreal: International Geographic Union.Google Scholar
  23. Krauklis, A. A. (1979). Problems of experimental landscape science. Novosibirsk: Nauka. (in Russian).Google Scholar
  24. Landolt, E. (1977). Okologische zeigerwerts zur Sweizer flora. Veroff. Geobot. Inst. ETH. Zurich, 64, 1–208.Google Scholar
  25. Lastochkin, A. N. (2011). General theory of systems. St. Petersburg: Lemma. (in Russian).Google Scholar
  26. Mikheev, V. S., & Ryashin, V. A. (1977). Map of landscapes of the south of East Siberia. Institute of geography of Siberia and Far East SB AS USSR. (in Russian).Google Scholar
  27. Neef, E. (1963a). Dimensionen geographischer betrachtungen. Forsch Fortschr, 37, 361–363.Google Scholar
  28. Neef, E. (1963b). Topologische und chorologische arbeitsweisen in der landschaftsforschung. Petermanns Geographische Mitteilungen, 107(4), 249–259.Google Scholar
  29. Ramensky, L. G., Tsatsenkin, I. A., & Chizhikov, O. N., et al. (1956). Ecological assessment of fodder land by vegetation cover. Moscow: Sel’khozgiz (in Russian).Google Scholar
  30. Semenov, Y. M. (2014). Landscape-geographical support of the ecological policy of nature management in regions of Siberia. Geography and Natural Resources, 35(3), 208–212.CrossRefGoogle Scholar
  31. Semenov, Y. M., & Lysanova, G. I. (2016). Mapping of geosystems for landscape planning of areas in the Altai Republic. Geography and Natural Resources, 37(4), 329–337.CrossRefGoogle Scholar
  32. Sochava, V. B. (1972). The study of geosystems: the current stage in complex physical geography. In International Geography (Vol. 1, pp. 298–301). Toronto: International Geographic Union.Google Scholar
  33. Sochava, V. B. (1974). Das systemparadigma in der geographie. Petermanns Geographische Mitteilungen, 118(3), 161–166.Google Scholar
  34. Sochava, V. B. (1978). Introduction to the theory of geosystems. Novosibirsk: Nauka. (in Russian).Google Scholar
  35. Sochava, V. B. (1980). Geographical aspects of the Siberian taiga. Novosibirsk: Nauka. (in Russian).Google Scholar
  36. Solodyankina, S. V., & Vanteeva, Y. V. (2017). Variability of the production function of vegetation of coastal geosystems of the Baikal region. Geography and Natural Resources, 2, 73–80. (in Russian).Google Scholar
  37. Ter Braak, C. J. E., & Looman, C. W. N. (1986). Weighted averaging, logistic regression and the Gaussian response model. Vegetatio, 65, 3–11.CrossRefGoogle Scholar
  38. Vanteeva, J. V., & Solodyankina, S. V. (2015). Ecosystem functions of steppe landscapes near Lake Baikal. Hacquetia, 14(1), 65–78.CrossRefGoogle Scholar
  39. Zamolodchikov, D. G., Utkin, A. M., & Chestnyh, O. V. (2003). Coefficients of conversion of plantation stocks to phytomass for the main forest-forming species of Russia. Forest Valuation and Forest Inventory, 1(32), 119–127. (in Russian).Google Scholar
  40. Zamolodchikov, D. G., Utkin, A. M., & Korovin, G. N. (2005). Conversion coefficients of phytomass/reserve in connection with dendrometric indicators and composition of a stand. Forest Science, 6, 78–81. (in Russian).Google Scholar
  41. Znamenskaya, T. I., Vanteeva, J. V., & Solodyankina, S. V. (2018). Factors of the development of water erosion in the zone of recreation activity in the Ol’khon region. Eurasian Soil Science, 2, 221–228.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Yulia V. Vanteeva
    • 1
  • Svetlana V. Solodyankina
    • 1
  1. 1.V.B. Sochava Institute of Geography, Siberian Branch of Russian Academy of SciencesIrkutskRussia

Personalised recommendations