Advertisement

Enhancing Reaction Systems: A Process Algebraic Approach

  • Linda BrodoEmail author
  • Roberto Bruni
  • Moreno Falaschi
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11760)

Abstract

In the area of Natural Computing, reaction systems are a qualitative abstraction inspired by the functioning of living cells, suitable to model the main mechanisms of biochemical reactions. This model has already been applied and extended successfully to various areas of research. Reaction systems interact with the environment represented by the context, and pose problems of implementation, as it is a new computation model. In this paper we consider the link-calculus, which allows to model multiparty interaction in concurrent systems, and show that it allows to embed reaction systems, by representing the behaviour of each entity and preserving faithfully their features. We show the correctness and completeness of our embedding. We illustrate our framework by showing how to embed a lac operon regulatory network. Finally, our framework can contribute to increase the expressiveness of reaction systems, by exploiting the interaction among different reaction systems.

Keywords

Process algebras Reaction systems Multi-party interaction 

Notes

Acknowledgments

We thank the anonymous reviewers for their detailed and very useful criticisms and recommendations that helped us to improve our paper.

References

  1. 1.
    Azimi, S.: Steady states of constrained reaction systems. Theor. Comput. Sci. 701(C), 20–26 (2017).  https://doi.org/10.1016/j.tcs.2017.03.047MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Azimi, S., Iancu, B., Petre, I.: Reaction system models for the heat shock response. Fundam. Inf. 131(3–4), 299–312 (2014).  https://doi.org/10.3233/FI-2014-1016MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Barbuti, R., Gori, R., Levi, F., Milazzo, P.: Investigating dynamic causalities in reaction systems. Theor. Comput. Sci. 623, 114–145 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bernini, A., Brodo, L., Degano, P., Falaschi, M., Hermith, D.: Process calculi for biological processes. Nat. Comput. 17(2), 345–373 (2018)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bodei, C., Brodo, L., Bruni, R.: Open multiparty interaction. In: Martí-Oliet, N., Palomino, M. (eds.) WADT 2012. LNCS, vol. 7841, pp. 1–23. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-37635-1_1CrossRefGoogle Scholar
  6. 6.
    Bodei, C., Brodo, L., Bruni, R., Chiarugi, D.: A flat process calculus for nested membrane interactions. Sci. Ann. Comp. Sci. 24(1), 91–136 (2014)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bodei, C., Brodo, L., Gori, R., Levi, F., Bernini, A., Hermith, D.: A static analysis for Brane Calculi providing global occurrence counting information. Theoret. Comput. Sci. 696, 11–51 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bodei, C., Brodo, L., Bruni, R.: A formal approach to open multiparty interactions. Theoret. Comput. Sci. 763, 38–65 (2019)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Brijder, R., Ehrenfeucht, A., Main, M., Rozenberg, G.: A tour of reaction systems. Int. J. Found. Comput. Sci. 22(07), 1499–1517 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Brodo, L.: On the expressiveness of pi-calculus for encoding mobile ambients. Math. Struct. Comput. Sci. 28(2), 202–240 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Brodo, L., Olarte, C.: Symbolic semantics for multiparty interactions in the link-calculus. In: Steffen, B., Baier, C., van den Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 62–75. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-51963-0_6CrossRefGoogle Scholar
  12. 12.
    Cardelli, L., Gordon, A.D.: Mobile ambients. Theoret. Comput. Sci. 240(1), 177–213 (2000)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Chiarugi, D., Falaschi, M., Hermith, D., Olarte, C., Torella, L.: Modelling non-markovian dynamics in biochemical reactions. BMC Syst. Biol. 9(S–3), S8 (2015)CrossRefGoogle Scholar
  14. 14.
    Chiarugi, D., Falaschi, M., Olarte, C., Palamidessi, C.: Compositional modelling of signalling pathways in timed concurrent constraint programming. In: Proceedings of ACM BCB 2010, pp. 414–417. ACM, New York (2010)Google Scholar
  15. 15.
    Corolli, L., Maj, C., Marinia, F., Besozzi, D., Mauri, G.: An excursion in reaction systems: from computer science to biology. Theoret. Comput. Sci. 454, 95–108 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Falaschi, M., Olarte, C., Palamidessi, C.: Abstract interpretation of temporal concurrent constraint programs. Theory Pract. Logic Program. 15(3), 312–357 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Mȩski, A., Penczek, W., Rozenberg, G.: Model checking temporal properties of reaction systems. Inf. Sci. 313, 22–42 (2015).  https://doi.org/10.1016/j.ins.2015.03.048CrossRefzbMATHGoogle Scholar
  18. 18.
    Okubo, F., Yokomori, T.: The computational capability of chemical reaction automata. Natural Comput. 15(2), 215–224 (2016).  https://doi.org/10.1007/s11047-015-9504-7MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Olarte, C.: SiLVer: Symbolic links verifier, December 2018. http://subsell.logic.at/links/links-web/index.html
  20. 20.
    Olarte, C., Chiarugi, D., Falaschi, M., Hermith, D.: A proof theoretic view of spatial and temporal dependencies in biochemical systems. Theor. Comput. Sci. 641, 25–42 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di Scienze economiche e aziendaliUniversità di SassariSassariItaly
  2. 2.Dipartimento di InformaticaUniversità di PisaPisaItaly
  3. 3.Dipartimento di Ingegneria dell’Informazione e Scienze MatematicheUniversità di SienaSienaItaly

Personalised recommendations