Advertisement

Categorical Information Flow

  • Tahiry RabehajaEmail author
  • Annabelle McIver
  • Carroll Morgan
  • Georg Struth
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11760)

Abstract

We propose a categorical model for information flows of cor- related secrets in programs. We show how programs act as transformers of such correlations, and that they can be seen as natural transformations between probabilistic constructors. We also study some basic properties of the construction.

References

  1. 1.
    Adámek, J., Herrlich, H., Strecker, G.: Abstract and Concrete Categories. Wiley, New York (1990)zbMATHGoogle Scholar
  2. 2.
    Alvim, M., Andrés, M., Palamidessi, C.: Probabilistic information flow. In Proceedings of the 25th IEEE Symposium on Logic in Computer Science, pp. 314–321 (2010)Google Scholar
  3. 3.
    Alvim, M., Chatzikokolakis, K., McIver, A., Morgan, C., Palamidessi, C., Smith, G.: Additive and multiplicative notions of leakage, and their capacities. In: Proceedings of the IEEE 27th Computer Security Foundations Symposium, pp. 308–322 (2014)Google Scholar
  4. 4.
    Alvim, M., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring information leakage using generalized gain functions. In: Proceedings of the 25th IEEE Computer Security Foundations Symposium, pp. 265–279, June 2012Google Scholar
  5. 5.
    Braun, C., Chatzikokolakis, K., Palamidessi, C.: Quantitative notions of leakage for one-try attacks. In: Proceedings of the 25th International Conference on Mathematical Foundations of Programming Semantics, pp. 75–91 (2009)CrossRefGoogle Scholar
  6. 6.
    Giry, M.: A categorical approach to probability theory. In: Banaschewski, B. (ed.) Categorical Aspects of Topology and Analysis. LNM, vol. 915, pp. 68–85. Springer, Heidelberg (1982).  https://doi.org/10.1007/BFb0092872CrossRefGoogle Scholar
  7. 7.
    Karlof, C., Wagner, D.: Hidden Markov model cryptanalysis. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 17–34. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45238-6_3CrossRefGoogle Scholar
  8. 8.
    McIver, A., Meinicke, L., Morgan, C.: Compositional closure for Bayes risk in probabilistic noninterference. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 223–235. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14162-1_19CrossRefGoogle Scholar
  9. 9.
    McIver, A., Morgan, C., Rabehaja, T.: Abstract hidden Markov models: a monadic account of quantitative information flow. In: Proceedings of the 30th Annual ACM/IEEE Symposium on Logic in Computer Science, pp. 597–608 (2015)Google Scholar
  10. 10.
    McIver, A.K., Morgan, C.C., Rabehaja, T.: Algebra for quantitative information flow. In: Höfner, P., Pous, D., Struth, G. (eds.) RAMICS 2017. LNCS, vol. 10226, pp. 3–23. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57418-9_1CrossRefGoogle Scholar
  11. 11.
    Bordenabe, N., McIver, A., Morgan, C., Rabehaja, T.: Reasoning about distributed secrets. In: Bouajjani, A., Silva, A. (eds.) FORTE 2017. LNCS, vol. 10321, pp. 156–170. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60225-7_11CrossRefGoogle Scholar
  12. 12.
    McIver, A., Morgan, C., Smith, G., Espinoza, B., Meinicke, L.: Abstract channels and their robust information-leakage ordering. In: Abadi, M., Kremer, S. (eds.) POST 2014. LNCS, vol. 8414, pp. 83–102. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54792-8_5CrossRefGoogle Scholar
  13. 13.
    Parthasarathy, K.R.: Probability Measures on Metric Spaces. Academic Press, Cambridge (1967)CrossRefGoogle Scholar
  14. 14.
    Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L. (ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00596-1_21CrossRefGoogle Scholar
  15. 15.
    Smith, G.: Quantifying information flow using min-entropy. In: Proceedings of the 8th International Conference on Quantitative Evaluation of SysTems, pp. 159–167 (2011)Google Scholar
  16. 16.
    van Breugel, F.: The metric monad for probabilistic nondeterminism (2005). Draft available at http://www.cse.yorku.ca/~franck/research/drafts/monad.pdf

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tahiry Rabehaja
    • 1
    Email author
  • Annabelle McIver
    • 2
  • Carroll Morgan
    • 3
  • Georg Struth
    • 4
  1. 1.Optus Macquarie University Cyber Security HubSydneyAustralia
  2. 2.Department of ComputingMacquarie UniversitySydneyAustralia
  3. 3.School of Computer Science and EngineeringUNSW, and Data61KensingtonAustralia
  4. 4.Department of Computer ScienceThe University of SheffieldSheffieldUK

Personalised recommendations