Advertisement

Fully Syntactic Uniform Continuity Formats for Bisimulation Metrics

  • Valentina CastiglioniEmail author
  • Ruggero Lanotte
  • Simone Tini
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11760)

Abstract

Behavioral metrics play a fundamental role in the analysis of probabilistic systems. They allow for a robust comparison of the behavior of processes and provide a formal tool to study their performance, privacy and security properties. Gebler, Larsen and Tini showed that the bisimilarity metric is also suitable for compositional reasoning, expressed in terms of continuity properties of the metric. Moreover, Gebler and Tini provided semantic formats guaranteeing, respectively, the non-extensiveness, non-expansiveness and Lipschitz continuity of this metric. In this paper, starting from their work, we define three specification formats for the bisimilarity metric, one for each continuity property, namely sets of syntactic constraints over the SOS rules defining process operators that guarantee the desired continuity property of the metric.

Notes

Acknowledgements

We thank the anonymous reviewers for their detailed comments and feedback. V. Castiglioni has been partially supported by the project ‘Open Problems in the Equational Logic of Processes’ (OPEL) of the Icelandic Research Fund (grant nr. 196050-051). We thank Carlos, Kostas, Mario and Frank for inviting us to submit this paper. Last but not least, we extend our heartiest wishes to Catuscia. Valentina is indebted to Catuscia for her support, mentoring and friendship during the period spent at INRIA, in her team COMETE. We wish Catuscia a very happy birthday!

References

  1. 1.
    Aceto, L., Fokkink, W.J., Verhoef, C.: Structural operational semantics. In: Handbook of Process Algebra, pp. 197–292. Elsevier (2001)Google Scholar
  2. 2.
    de Alfaro, L., Faella, M., Stoelinga, M.: Linear and branching system metrics. IEEE Trans. Softw. Eng. 35(2), 258–273 (2009)CrossRefGoogle Scholar
  3. 3.
    de Alfaro, L., Henzinger, T.A., Majumdar, R.: Discounting the future in systems theory. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1022–1037. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-45061-0_79CrossRefGoogle Scholar
  4. 4.
    Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: Computing behavioral distances, compositionally. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 74–85. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40313-2_9CrossRefzbMATHGoogle Scholar
  5. 5.
    Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. J. ACM 42(1), 232–268 (1995)MathSciNetCrossRefGoogle Scholar
  6. 6.
    van Breugel, F., Worrell, J.: A behavioural pseudometric for probabilistic transition systems. Theor. Comput. Sci. 331(1), 115–142 (2005)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Castiglioni, V.: Trace and testing metrics on nondeterministic probabilistic processes. In: Proceedings of the EXPRESS/SOS 2018. EPTCS, vol. 276, pp. 19–36 (2018)Google Scholar
  8. 8.
    Castiglioni, V., Gebler, D., Tini, S.: Modal decomposition on nondeterministic probabilistic processes. In: Proceedings of the CONCUR 2016, pp. 36:1–36:15 (2016)Google Scholar
  9. 9.
    Castiglioni, V., Gebler, D., Tini, S.: SOS-based modal decomposition onnondeterministic probabilistic processes. Logical Methods Comput. Sci. 14(2) (2018) Google Scholar
  10. 10.
    Chatzikokolakis, K., Gebler, D., Palamidessi, C., Xu, L.: Generalized bisimulation metrics. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 32–46. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44584-6_4CrossRefGoogle Scholar
  11. 11.
    D’Argenio, P.R., Gebler, D., Lee, M.D.: A general SOS theory for the specification of probabilistic transition systems. Inf. Comput. 249, 76–109 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    D’Argenio, P.R., Gebler, D., Lee, M.D.: Axiomatizing bisimulation equivalences and metrics from probabilistic SOS rules. In: Muscholl, A. (ed.) FoSSaCS 2014. LNCS, vol. 8412, pp. 289–303. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54830-7_19CrossRefzbMATHGoogle Scholar
  13. 13.
    Deng, Y., Chothia, T., Palamidessi, C., Pang, J.: Metrics for action-labelled quantitative transition systems. Electr. Notes Theor. Comput. Sci. 153(2), 79–96 (2006)CrossRefGoogle Scholar
  14. 14.
    Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled markov processes. Theor. Comput. Sci. 318(3), 323–354 (2004)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Desharnais, J., Jagadeesan, R., Gupta, V., Panangaden, P.: The metric analogue of weak bisimulation for probabilistic processes. In: Proceedings of the LICS 2002, pp. 413–422 (2002)Google Scholar
  16. 16.
    Gebler, D., Larsen, K.G., Tini, S.: Compositional bisimulation metric reasoningwith probabilistic process calculi. Logical Methods Comput. Sci. 12(4) (2016)Google Scholar
  17. 17.
    Gebler, D., Tini, S.: Compositionality of approximate bisimulation for probabilistic systems. In: Proceedings of the EXPRESS/SOS 2013, pp. 32–46 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gebler, D., Tini, S.: Fixed-point characterization of compositionality properties of probabilistic processes combinators. In: Proceedings of the EXPRESS/SOS 2014, pp. 63–78 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Gebler, D., Tini, S.: SOS specifications for uniformly continuous operators. J. Comput. Syst. Sci. 92, 113–151 (2018)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Giacalone, A., Jou, C.C., Smolka, S.A.: Algebraic reasoning for probabilistic concurrent systems. In: Proceedings of the IFIP Work, Conference on Programming, Concepts and Methods, pp. 443–458 (1990)Google Scholar
  21. 21.
    Kantorovich, L.V.: On the transfer of masses. Dokl. Akad. Nauk SSSR 37(2), 227–229 (1942)Google Scholar
  22. 22.
    Katoen, J.P., Baier, C., Latella, D.: Metric semantics for true concurrent real time. TCS 254(1–2), 501–542 (2001)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kwiatkowska, M., Norman, G.: Probabilistic metric semantics for a simple language with recursion. In: Penczek, W., Szałas, A. (eds.) MFCS 1996. LNCS, vol. 1113, pp. 419–430. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-61550-4_167CrossRefGoogle Scholar
  24. 24.
    Lanotte, R., Merro, M., Tini, S.: Compositional weak metrics for group key update. In: MFCS 2017. LIPIcs, vol. 42, pp. 72:1–72:16 (2017)Google Scholar
  25. 25.
    Lanotte, R., Merro, M., Tini, S.: Equational reasonings in wireless networkgossip protocols. Logical Methods Comput. Sci. 14(3) (2018)Google Scholar
  26. 26.
    Lanotte, R., Merro, M., Tini, S.: Towards a formal notion of impact metric for cyber-physical attacks. In: Furia, C.A., Winter, K. (eds.) IFM 2018. LNCS, vol. 11023, pp. 296–315. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-98938-9_17CrossRefGoogle Scholar
  27. 27.
    Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94(1), 1–28 (1991)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Mousavi, M.R., Reniers, M.A., Groote, J.F.: Sos formats and meta-theory: 20 years after. Theoret. Comput. Sci. 373(3), 238–272 (2007)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Plotkin, G.: A structural approach to operational semantics. Report DAIMI FN-19, Aarhus University (1981). Reprinted in JLAP, 60–61:17–139 (2004)Google Scholar
  30. 30.
    Plotkin, G.D.: A structural approach to operational semantics. Report DAIMI FN-19, Aarhus University (1981)Google Scholar
  31. 31.
    Segala, R.: Modeling and verification of randomized distributed real-time systems. Ph.D. thesis, MIT (1995)Google Scholar
  32. 32.
    Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes. Nord. J. Comput. 2(2), 250–273 (1995)MathSciNetzbMATHGoogle Scholar
  33. 33.
    de Simone, R.: Higher-level synchronising devices in MEIJE-SCCS. Theor. Comput. Sci. 37, 245–267 (1985)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Song, L., Deng, Y., Cai, X.: Towards automatic measurement of probabilistic processes. In: Proceedings of the QSIC 2007, pp. 50–59 (2007)Google Scholar
  35. 35.
    Tracol, M., Desharnais, J., Zhioua, A.: Computing distances between probabilistic automata. In: Proceedings of the QAPL 2011, pp. 148–162 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Valentina Castiglioni
    • 1
    • 2
    Email author
  • Ruggero Lanotte
    • 3
  • Simone Tini
    • 3
  1. 1.INRIA Saclay - Ile de FrancePalaiseauFrance
  2. 2.Reykjavik UniversityReykjavikIceland
  3. 3.University of InsubriaComoItaly

Personalised recommendations