Skip to main content

Design and Optimization of the Thermo-Mechanical Behavior in Glass Reinforced Polyamide 6 for Automotive Application

  • Conference paper
  • First Online:
Design Tools and Methods in Industrial Engineering (ADM 2019)

Abstract

In this work a rational approach, such as Design of Experiments, has been used to design E-glass and S2-glass reinforced polyamide 6 composites. The models, derived by the multivariate analysis of the experimental tests, allowed deriving response surfaces in which the effect of reinforce’s composition, content and shape on the thermo-mechanical have been related to composite’s behavior during cycling loads and high temperatures. These composites find application in the developing of a sensor used in the automotive engine compartment where thermal and vibration effects must be taken in account to avoid premature failure. Thirty experiments were planned by Design of Experiments and analyzed through Analysis Of Variance to correlate reinforce’s properties to coefficient of thermal expansion, Young Modulus and damping over temperature/frequency variation. Statically reliable models were calculated to obtain a numerical estimation of the overall quadratic and cubic interactions among reinforce’s properties, explaining how matrix/reinforce interaction affects composite’s properties. Nevertheless, the employment of S2-glass led to restrained coefficient of thermal expansion of the composites, reinforce’s content of E-glass fibers over 30wt% is in a better agreement with the composite’s overall requirements for this tailored application, due to restrained mechanical damping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benaarbia, A., Chrysochoos, A., Robert, G.: Thermomechanical analysis of the onset of strain concentration zones in wet polyamide 6.6 subjected to cyclic loading. Mech. Mater. 99, 9–25 (2016). https://doi.org/10.1016/j.mechmat.2016.04.011

    Article  Google Scholar 

  2. Ullah Khan, S., Yin Li, C., Siddiqui, N.A., Kim, J.-K.: Vibration damping characteristics of carbon fiber-reinforced composites containing multi-walled carbon nanotubes (2011). https://doi.org/10.1016/j.compscitech.2011.03.022

  3. Etaati, A., Mehdizadeh, S.A., Wang, H., Pather, S.: Vibration damping characteristics of short hemp fibre thermoplastic composites. J. Reinf. Plast. Compos. 33, 330–341 (2013). https://doi.org/10.1177/0731684413512228

    Article  Google Scholar 

  4. Santhanakrishnan Balakrishnan, V., Seidlitz, H.: Potential repair techniques for automotive composites: a review. Compos. Part B Eng. 145, 28–38 (2018). https://doi.org/10.1016/j.compositesb.2018.03.016

    Article  Google Scholar 

  5. Callister, W.D.: Composites. In: Material Science and Engineering An Introduction, 7th edn., pp. 577–620 (2006)

    Google Scholar 

  6. Yang, G., Park, M., Park, S.J.: Recent progresses of fabrication and characterization of fibers-reinforced composites: a review. Compos. Commun. 14, 34–42 (2019). https://doi.org/10.1016/j.coco.2019.05.004

    Article  Google Scholar 

  7. He, W., Gao, J., Liao, S., Wang, X., Qin, S., Song, P.: A facile method to improve thermal stability and flame retardancy of polyamide 6. Compos. Commun. 13, 143–150 (2019). https://doi.org/10.1016/j.coco.2019.04.010

    Article  Google Scholar 

  8. Ibáñez-Gutiérrez, F.T., Cicero, S., Carrascal, I.A., Procopio, I.: Effect of fibre content and notch radius in the fracture behaviour of short glass fibre reinforced polyamide 6: an approach from the theory of critical distances. Compos. Part B Eng. 94, 299–311 (2016). https://doi.org/10.1016/j.compositesb.2016.03.064

    Article  Google Scholar 

  9. Popescu, A., Hancu, L., Bere, P.: Research concerning the optimum extrusion temperature for reinforced polyamide. Appl. Mech. Mater. 371, 394–398 (2013). https://doi.org/10.4028/www.scientific.net/amm.371.394

    Article  Google Scholar 

  10. Güllü, A., Özdemir, A., Özdemir, E.: Experimental investigation of the effect of glass fibres on the mechanical properties of polypropylene (PP) and polyamide 6 (PA6) plastics. Mater. Des. 27, 316–323 (2006). https://doi.org/10.1016/j.matdes.2004.10.013

    Article  Google Scholar 

  11. Tognana, S., Salgueiro, W., Somoza, A., Pomarico, J.A., Ranea-Sandoval, H.F.: Influence of the filler content on the thermal expansion behavior of an epoxy matrix particulate composite. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 157, 26–31 (2009). https://doi.org/10.1016/j.mseb.2008.12.003

  12. Nguyen, T.D., Jones, R.E., Boyce, B.L.: Modeling the anisotropic finite-deformation viscoelastic behavior of soft fiber-reinforced composites. Int. J. Solids Struct. 44, 8366–8389 (2007). https://doi.org/10.1016/j.ijsolstr.2007.06.020

    Article  MATH  Google Scholar 

  13. Nedjar, B.: An anisotropic viscoelastic fibre–matrix model at finite strains: continuum formulation and computational aspects (2007). https://doi.org/10.1016/j.cma.2006.09.009

  14. Fukuda, H., Miyazawa, T.: Micromechanical approach to the tensile strength of unidirectional composites. Adv. Compos. Mater. 4, 101–110 (1994). https://doi.org/10.1163/156855194X00231

    Article  Google Scholar 

  15. Shojiro, O., Osamura, K.: Tensile strength of fibre-reinforced metal matrix composites with non-uniform fibre spacing (1989). https://doi.org/10.1007/BF02385736

  16. Beyerlein, I.J., Phoenix, S.L.: Stress concentrations around multiple fiber breaks in an elastic matrix with local yielding or debonding using quadratic influence superposition. J. Mech. Phys. Solids 44, 1997–2039 (1996). https://doi.org/10.1016/S0022-5096(96)00068-3

    Article  Google Scholar 

  17. Montgomery, D.C.: Design and Analysis of Experiments, 8th edn. (2012). https://doi.org/10.1198/tech.2006.s372

  18. Box, G.E.P., Hunter, J.S., Hunter, W.G.: Statistics for Experilllenters (2005)

    Google Scholar 

  19. Blondet, G., Duigou, J.Le, Boudaoud, N., Eynard, B.: An ontology for numerical design of experiments processes. Comput. Ind. 94, 26–40 (2018). https://doi.org/10.1016/j.compind.2017.09.005

    Article  Google Scholar 

  20. Colbourn, C.C., Dinitz, J.H.: Handbook of Combinatorial Designs, 2nd edn., 20065545, p. 1011 (2006). https://doi.org/10.1201/9781420010541

  21. Derringer, G., Suich, R.: Simultaneous optimization of several response variables. J. Qual. Technol. 12, 214–219 (1980). https://doi.org/10.1080/00224065.1980.11980968

    Article  Google Scholar 

  22. BS EN ISO 527-5:2009: ISO 527-5:2009 Plastics — Determination of tensile properties. Part. 1, 527–1 (2009)

    Google Scholar 

  23. Sighinolfi, D.: Thermal expansion investigation on glasses used in ceramic industry. CFI Ceram. Forum Int. 87, 33–35 (2010)

    Google Scholar 

  24. ISO, E.: ISO 527-1 - Plastics—Determination of tensile properties–Part 1: general principles (1996)

    Google Scholar 

  25. Leardi, R.: Experimental design in chemistry: a tutorial. Anal. Chim. Acta 652, 161–172 (2009). https://doi.org/10.1016/j.aca.2009.06.015

    Article  Google Scholar 

  26. Saravana Kumar, N., VinothKumar, G., VinothKumar, C., Prabhu, M.: Experimental investigation on mechanical behavior of E-Glass and S-Glass fiber reinforced with polyester resin 5, 19–26 (2018)

    Google Scholar 

  27. Barker, R.E.: An approximate relation between elastic moduli and thermal expansivities. J. Appl. Phys. 34, 107–116 (1963). https://doi.org/10.1063/1.1729049

    Article  Google Scholar 

  28. Matykiewicz, D., Barczewski, M., Knapski, D., Skórczewska, K.: Hybrid effects of basalt fibers and basalt powder on thermomechanical properties of epoxy composites. Compos. Part B Eng. 125, 157–164 (2017). https://doi.org/10.1016/j.compositesb.2017.05.060

    Article  Google Scholar 

  29. Senthilvelan, S., Gnanamoorthy, R.: Damping characteristics of unreinforced, glass and carbon fiber reinforced nylon 6/6 spur gears. Polym. Test. 25, 56–62 (2006). https://doi.org/10.1016/j.polymertesting.2005.09.005

    Article  Google Scholar 

  30. Hadi, A.S., Ashton, J.N.: Measurement and theoretical modelling of the damping properties of a uni-directional glass/epoxy composite. Compos. Struct. 34, 381–385 (1996). https://doi.org/10.1016/0263-8223(96)00005-0

    Article  Google Scholar 

  31. Haddad, Y.M., Feng, J.: On the trade-off between damping and stiffness in the design of discontinuous fibre-reinforced composites. Compos. Part B Eng. 34, 11–20 (2003). https://doi.org/10.1016/S1359-8368(02)00076-8

    Article  Google Scholar 

  32. Wallenberger, F.T., Watson, J.C., Hong, L.: Glass fibers. In: ASM Handbook, ASM. International, Material Park, Ohio, vol. 21, pp. 27–34 (2001)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank ASK industries S.p.A. for financial support and technical assistance. This work was supported by the Italian Ministry of Economic Development (MISE)’s FUND FOR THE SUSTAINABLE GROWTH (F.C.S) under grant agreement (CUP) B48I15000130008, project VASM (“Vehicle Active Sound Management”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Barbi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barbi, S., Cattani, L., Manfredini, T., Montorsi, M. (2020). Design and Optimization of the Thermo-Mechanical Behavior in Glass Reinforced Polyamide 6 for Automotive Application. In: Rizzi, C., Andrisano, A.O., Leali, F., Gherardini, F., Pini, F., Vergnano, A. (eds) Design Tools and Methods in Industrial Engineering. ADM 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-31154-4_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31154-4_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31153-7

  • Online ISBN: 978-3-030-31154-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics