Advertisement

Non-monotonic Population and Coherence Evolution in Markovian Open-System Dynamics

  • J. F. HaaseEmail author
  • A. Smirne
  • S. F. Huelga
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 237)

Abstract

We consider a simple microscopic model where the open-system dynamics of a qubit,  despite being Markovian, shows features which are typically associated to the presence of memory effects.  Namely, a non-monotonic behavior both in the population and in the coherence evolution arises due to the presence of non-secular contributions,  which break the phase covariance of the Lindbladian (semigroup) dynamics. We also show by an explicit construction how such a non-monotonic behavior can be reproduced by a phase covariant evolution, but only at the price of inserting some state-dependent memory effects.

Notes

Acknowledgements

We would like to thank Bassano Vacchini, Heinz-Peter Breuer, and Angelo Bassi for the organization of the 684. WE-Heraeus-Seminar on Advances in open systems and fundamental tests of quantum mechanics and very specially to the Wilhelm und Else Heraeus Stiftung for their continuous support of fundamental research in physics.

References

  1. 1.
    H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)zbMATHGoogle Scholar
  2. 2.
    Á. Rivas, S.F. Huelga, Open Quantum Systems (Springer, New York, 2012)CrossRefGoogle Scholar
  3. 3.
    Á. Rivas, S.F. Huelga, M.B. Plenio, Rep. Progr. Phys. 77, 094001 (2014). http://stacks.iop.org/0034-4885/77/i=9/a=094001
  4. 4.
    H.-P. Breuer, E.-M. Laine, J. Piilo, B. Vacchini, Rev. Mod. Phys. 88, 021002 (2016).  https://doi.org/10.1103/RevModPhys.88.021002
  5. 5.
    I. de Vega, D. Alonso, Rev. Mod. Phys. 89, 015001 (2017).  https://doi.org/10.1103/RevModPhys.89.015001
  6. 6.
    L. Li, M.J.W. Hall, H.M. Wiseman, Phys. Rep. 759, 1 (2018).  https://doi.org/10.1016/j.physrep.2018.07.001ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    E.-M. Laine, H.-P. Breuer, J. Piilo, Sci. Rep. 4, 4620 (2014).  https://doi.org/10.1038/srep04620CrossRefGoogle Scholar
  8. 8.
    G. Torre, F. Illuminati, ArXiv e-prints 1805, 03617 (2018)Google Scholar
  9. 9.
    R. Vasile, S. Olivares, M.A. Paris, S. Maniscalco, Phys. Rev. A 83, 042321 (2011).  https://doi.org/10.1103/PhysRevA.83.042321
  10. 10.
    B.-H. Liu, X.-M. Hu, Y.-F. Huang, C.-F. Li, G.-C. Guo, A. Karlsson, E.-M. Laine, S. Maniscalco, C. Macchiavello, J. Piilo, Eurphys. Lett. 114, 10005 (2016). http://stacks.iop.org/0295-5075/114/i=1/a=10005
  11. 11.
    B. Bylicka, D. Chrúscínski, S. Maniscalco, Sci. Rep. 4, 5720 (2014).  https://doi.org/10.1038/srep05720ADSCrossRefGoogle Scholar
  12. 12.
    M.B. Plenio, S.F. Huelga, A. Beige, P.L. Knight, Phys. Rev. A 59, 2468 (1999).  https://doi.org/10.1103/PhysRevA.59.2468
  13. 13.
    S.F. Huelga, A. Rivas, M.B. Plenio Phys. Rev. Lett. 108, 160402 (2012).  https://doi.org/10.1103/PhysRevLett.108.160402
  14. 14.
    L. Cywínski, R.M. Lutchyn, C.P. Nave, S. Das Sarma, Phys. Rev. B 77, 174509 (2008).  https://doi.org/10.1103/PhysRevB.77.174509
  15. 15.
    G. de Lange, D. Risté, V.V. Dobrovitski, R. Hanson, Phys. Rev. Lett. 106, 080802 (2011).  https://doi.org/10.1103/PhysRevLett.106.080802
  16. 16.
    C.L. Degen, F. Reinhard, P. Cappellaro, Rev. Mod. Phys. 89, 035002 (2017).  https://doi.org/10.1103/RevModPhys.89.035002
  17. 17.
    A.W. Chin, S.F. Huelga, M.B. Plenio, Phys. Rev. Lett. 109, 233601 (2012).  https://doi.org/10.1103/PhysRevLett.109.233601
  18. 18.
    Y. Matsuzaki, S.C. Benjamin, J. Fitzsimons, Phys. Rev. A 84, 012103 (2011).  https://doi.org/10.1103/PhysRevA.84.012103ADSCrossRefGoogle Scholar
  19. 19.
    A. Smirne, J. Kołodýnski, S.F. Huelga, R. Demkowicz-Dobrzański, Phys. Rev. Lett. 116, 120801 (2016).  https://doi.org/10.1103/PhysRevLett.116.120801
  20. 20.
    J.F. Haase, A. Smirne, J. Kołodýnski, R. Demkowicz-Dobrzański, S.F. Huelga, New J. Phys. 20, 053009 (2018). http://stacks.iop.org/1367-2630/20/i=5/a=053009
  21. 21.
    B.-H. Liu, L. Li, Y.-F. Huang, C.-F. Li, G.-C. Guo, E.-M. Laine, H.-P. Breuer, J. Piilo, Nat. Phys. 7, 931 (2011).  https://doi.org/10.1038/nphys2085CrossRefGoogle Scholar
  22. 22.
    S. Cialdi, D. Brivio, E. Tesio, M.G.A. Paris, Phys. Rev. A 83, 042308 (2011).  https://doi.org/10.1103/PhysRevA.83.042308
  23. 23.
    A. Chiuri, C. Greganti, L. Mazzola, M. Paternostro, P. Mataloni, Sci. Rep. 2, 968 (2012).  https://doi.org/10.1038/srep00968ADSCrossRefGoogle Scholar
  24. 24.
    B.-H. Liu, D.-Y. Cao, Y.-F. Huang, C.-F. Li, G.-C. Guo, E.-M. Laine, H.-P. Breuer, J. Piilo, Sci. Rep. 3, 1781 (2013).  https://doi.org/10.1038/srep01781CrossRefGoogle Scholar
  25. 25.
    J. Jin, V. Giovannetti, R. Fazio, F. Sciarrino, P. Mataloni, A. Crespi, R. Osellame, Phys. Rev. A 91, 012122 (2015).  https://doi.org/10.1103/PhysRevA.91.012122
  26. 26.
    S. Cialdi, M.A.C. Rossi, C. Benedetti, B. Vacchini, D. Tamascelli, S. Olivares, M.G.A. Paris, Appl. Phys. Lett. 110, 081107 (2017).  https://doi.org/10.1063/1.4977023ADSCrossRefGoogle Scholar
  27. 27.
    M. Wittemer, G. Clos, H.-P. Breuer, U. Warring, T. Schaetz, Phys. Rev. A 97, 020102 (2018).  https://doi.org/10.1103/PhysRevA.97.020102
  28. 28.
    J.F. Haase, P.J. Vetter, T. Unden, A. Smirne, J. Rosskopf, B. Naydenov, A. Stacey, F. Jelezko, M.B. Plenio, S.F. Huelga, Phys. Rev. Lett. 121, 060401 (2018).  https://doi.org/10.1103/PhysRevLett.121.060401
  29. 29.
    F. Wang, P.-Y. Hou, Y.-Y. Huang, W.-G. Zhang, X.-L. Ouyang, X. Wang, X.-Z. Huang, H.-L. Zhang, L. He, X.-Y. Chang, L.-M. Duan, Phys. Rev. B 98, 064306 (2018).  https://doi.org/10.1103/PhysRevB.98.064306ADSCrossRefGoogle Scholar
  30. 30.
    S. Peng, X. Xu, K. Xu, P. Huang, P. Wang, X. Kong, X. Rong, F. Shi, C. Duan, J. Du, Sci. Bull. 63, 336 (2018).  https://doi.org/10.1016/j.scib.2018.02.017CrossRefGoogle Scholar
  31. 31.
    Y. Tanimura, R. Kubo, J. Phys. Soc. Japn. 58, 1199 (1989).  https://doi.org/10.1143/JPSJ.58.1199; Z. Tang, X. Ouyang, Z. Gong, H. Wang, J. Wu, J. Chem. Phys. 143, 224112 (2015).  https://doi.org/10.1063/1.4936924
  32. 32.
    L. Diosi, W.T. Strunz, N. Gisin, Phys. Rev. A 58, 1699 (1998).  https://doi.org/10.1103/PhysRevA.58.1699ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    J. Prior, A.W. Chin, S.F. Huelga, M.B. Plenio, Phys. Rev. Lett. 105, 050404 (2010).  https://doi.org/10.1103/PhysRevLett.105.050404
  34. 34.
    F. Ciccarello, G.M. Palma, V. Giovannetti, Phys. Rev. A 87, 040103(R) (2013).  https://doi.org/10.1103/PhysRevA.87.040103ADSCrossRefGoogle Scholar
  35. 35.
    L. Diosi, L. Ferialdi, Phys. Rev. Lett. 113, 200403 (2014).  https://doi.org/10.1103/PhysRevLett.113.200403; L. Ferialdi, Phys. Rev. Lett. 116, 120402 (2016),  https://doi.org/10.1103/PhysRevLett.116.120402
  36. 36.
    T.B. Batalhao, G.D. de Moraes Neto, M.A. de Ponte, M.H.Y. Moussa, Phys. Rev. A 90, 032105 (2014).  https://doi.org/10.1103/PhysRevA.90.032105
  37. 37.
    B. Vacchini, Phys. Rev. Lett. 117, 230401 (2016).  https://doi.org/10.1103/PhysRevLett.117.230401
  38. 38.
    G. Gasbarri, M. Toroš, A. Bassi, Phys. Rev. Lett. 119 100403 (2017).  https://doi.org/10.1103/PhysRevLett.119.100403; G. Gasbarri, L. Ferialdi, Phys. Rev. A 98, 042111 (2018).  https://doi.org/10.1103/PhysRevA.98.042111
  39. 39.
    D. Tamascelli, A. Smirne, S.F. Huelga, M.B. Plenio, Phys. Rev. Lett. 120, 030402 (2018).  https://doi.org/10.1103/PhysRevLett.120.030402; D. Tamascelli, A. Smirne, S.F. Huelga, M.B. Plenio, arXiv:1811.12418
  40. 40.
    S. Campbell, F. Ciccarello, G.M. Palma, B. Vacchini, Phys. Rev. A 98, 012142 (2018).  https://doi.org/10.1103/PhysRevA.98.012142ADSCrossRefGoogle Scholar
  41. 41.
    N.G. van Kampen, Physica 74, 215 (1974).  https://doi.org/10.1016/0031-8914(74)90121-9; ibid. 74, 239 (1974).  https://doi.org/10.1016/0031-8914(74)90122-0
  42. 42.
    F. Shibata, Y. Takahashi, N. Hashitume, J. Stat. Phys. 17, 171 (1977).  https://doi.org/10.1007/BF01040100ADSCrossRefGoogle Scholar
  43. 43.
    S. Chaturvedi, F. Shibata, Z. Phys. B 35, 297 (1979).  https://doi.org/10.1007/BF01319852
  44. 44.
    H.-P. Breuer, B. Kappler, F. Petruccione, Ann. Phys. 291, 36 (2001). http://www.sciencedirect.com/science/article/pii/S0003491601961524
  45. 45.
    Á. Rivas, S.F. Huelga, M.B. Plenio, Phys. Rev. Lett. 105, 050403 (2010).  https://doi.org/10.1103/PhysRevLett.105.050403
  46. 46.
    H.-P. Breuer, E.-M. Laine, J. Piilo, Phys. Rev. Lett. 103, 210401 (2009).  https://doi.org/10.1103/PhysRevLett.103.210401
  47. 47.
    K. H. Madsen, S. Ates, T. Lund-Hansen, A. Löer, S. Reitzenstein, A. Forchel, P. Lodahl, Phys. Rev. Lett. 106, 233601 (2011).  https://doi.org/10.1103/PhysRevLett.106.233601
  48. 48.
    H.-G. Duan, V.I. Prokhorenko, R. J. Cogdell, K. Ashraf, A. L. Stevens, M. Thorwart, and R. J. D. Miller, Proc. Nat. Acad. Sci. 114, 8493 (2017). https://www.pnas.org/content/114/32/8493
  49. 49.
    M.H.M. Passos, P.C. Obando, W.F. Balthazar, F.M. Paula, J.A.O. Huguenin, M.S. Sarandy, ArXiv e-prints. arXiv:1807.05378 (2018)
  50. 50.
    A. Holevo, Rep. Math. Phys. 32, 211 (1993). http://www.sciencedirect.com/science/article/pii/0034487793900146
  51. 51.
    A. Holevo, J. Math. Phys. 37, 1812 (1996).  https://doi.org/10.1063/1.531481ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    B. Vacchini, Lect. Notes Phys. 787, 39 (2010)ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    V. Gorini, A. Kossakowski, E.C.G. Sudarshan, J. Math. Phys. (N.Y.) 17, 821 (1976).  https://doi.org/10.1063/1.522979
  54. 54.
    M.J.W. Hall, J.D. Cresser, L. Li, E. Andersson, Phys. Rev. A 89, 042120 (2014).  https://doi.org/10.1103/PhysRevA.89.042120ADSCrossRefGoogle Scholar
  55. 55.
    G. Lindblad, Commun. Math. Phys. 48, 119 (1976).  https://doi.org/10.1007/BF01608499ADSCrossRefGoogle Scholar
  56. 56.
    E.-M. Laine, J. Piilo, H.-P. Breuer, Phys. Rev. A 81, 062115 (2010).  https://doi.org/10.1103/PhysRevA.81.062115ADSCrossRefGoogle Scholar
  57. 57.
    D. Chruściński, Á. Rivas, E. Størmer, Phys. Rev. Lett. 121, 080407 (2018).  https://doi.org/10.1103/PhysRevLett.121.080407
  58. 58.
    C. King, M. Ruskai, IEEE Trans. Inf. Theory 47, 192 (2001).  https://doi.org/10.1109/18.904522; M.B. Ruskai, S. Szarek, E. Werner, Linear Algebra Appl. 347, 159 (2002).  https://doi.org/10.1016/S0024-3795(01)00547-X
  59. 59.
    E. Andersson, J.D. Cresser, M.J.W. Hall, J. Mod. Opt. 54, 1695 (2007).  https://doi.org/10.1080/09500340701352581ADSCrossRefGoogle Scholar
  60. 60.
    A. Smirne, B. Vacchini, Phys. Rev. A 82, 022110 (2010).  https://doi.org/10.1103/PhysRevA.82.022110ADSCrossRefGoogle Scholar
  61. 61.
    I. Marvian, R.W. Spekkens, Phys. Rev. A 94, 052324 (2016).  https://doi.org/10.1103/PhysRevA.94.052324ADSCrossRefGoogle Scholar
  62. 62.
    M. Lostaglio, K. Korzekwa, A. Milne, Phys. Rev. A 96, 032109 (2017).  https://doi.org/10.1103/PhysRevA.96.032109ADSCrossRefGoogle Scholar
  63. 63.
    A.J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher, A. Garg, W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).  https://doi.org/10.1103/RevModPhys.59.1
  64. 64.
    R. Chaves, J.B. Brask, M. Markiewicz, J. Kołodyński, A. Acín, Phys. Rev. Lett. 111 120401 (2013).  https://doi.org/10.1103/PhysRevLett.111.120401; J.B. Brask, R. Chaves, J. Kołodyński, Phys. Rev. X 5, 031010 (2015).  https://doi.org/10.1103/PhysRevX.5.031010
  65. 65.
    T. Baumgratz, M. Cramer, M.B. Plenio, Phys. Rev. Lett. 113, 140401 (2014).  https://doi.org/10.1103/PhysRevLett.113.140401
  66. 66.
    J. Teittinen, H. Lyyra, B. Sokolov, S. Maniscalco, New J. Phys. 20, 073012 (2018).  https://doi.org/10.1088/1367-2630/aacc38ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut für Theoretische Physik and IQST, Universität UlmUlmGermany

Personalised recommendations