Measuring Environmental Impact of Collaborative Urban Transport Networks: A Case Study

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11756)


Nowadays, urban freight transport networks must be environmentally sustainable. As a consequence, collaboration strategies have been implemented as one alternative to enhance the efficiency of the supply chain and to reduce its environmental burden. However, there is a lack of knowledge about how to correctly quantify the environmental impact of collaborative urban freight transport networks. To fill this gap, we present an optimization approach for evaluating the environmental performance of collaborative systems by applying the Overall Greenness Performance (OGP) tool. We illustrate our approach using real data from the city of Bogotá, Colombia. Our results provide insights for shifting towards sustainable freight transportation networks. For example, we quantify savings up to 11% of CO2 emissions after applying collaboration in urban transportation contexts.


Urban freight transport Collaboration Environmental performance Optimization Urban logistics Case study 


  1. Bektaş, T., Ehmke, J., Psaraftis, H., Puchinger, J.: The role of operational research in green freight transportation. Eur. J. Oper. Res. 274(3), 807–823 (2019)MathSciNetCrossRefGoogle Scholar
  2. Braekers, K., Ramaekers, K., Van Nieuwenhuyse, I.: The vehicle routing problem: state of the art classification and review. Comput. Ind. Eng. 99, 300–313 (2016)CrossRefGoogle Scholar
  3. Buldeo Rai, H., van Lier, T., Meers, D., Macharis, C.: Improving urban freight transport sustainability: Policy assessment framework and case study. Res. Transp. Econ. 64, 26–35 (2017)CrossRefGoogle Scholar
  4. Churchman, C.W.: The Systems Approach, 1st edn. Dell Publishing, New York (1968)Google Scholar
  5. City Mayors: The Largest Cities in the World and Their Mayors (2017). Accessed 02 May 2019
  6. Comi, A., Schiraldi, M., Buttarazzi, B.: Smart urban freight transport: tools for planning and optimising delivery operations. Simul. Model. Pract. Theor. 88, 48–61 (2018)CrossRefGoogle Scholar
  7. EL TIEMPO: El abecé de las restricciones a los vehículos de carga en Bogotá (2013). Accessed 02 May 2019
  8. EL TIEMPO: Así está la velocidad de 5 vías de Bogotá (2016). Accessed 02 May 2019
  9. Eren Akyol, D., De Koster, R.: Determining time windows in urban freight transport: a city cooperative approach. Transp. Res. Part E 118, 34–50 (2018)CrossRefGoogle Scholar
  10. Forsberg, J., Krook-Riekkola, A.: Supporting cities’ emission mitigation strategies: modelling urban transport in a times energy system modelling framework. WIT Trans. Built Environ. 176, 15–25 (2018)Google Scholar
  11. Garg, C., Sharma, A., Goyal, G.: A hybrid decision model to evaluate critical factors for successful adoption of GSCM practices under fuzzy environment. Uncertain Supply Chain Manag. 5(1), 59–70 (2017)CrossRefGoogle Scholar
  12. Gonzalez-Feliu, J.: Sustainability evaluation of green urban logistics systems: literature overview and proposed framework. In: Green Initiatives for Business Sustainability and Value Creation, pp. 103–134 (2017)CrossRefGoogle Scholar
  13. Kiba-Janiak, M.: Urban freight transport in city strategic planning. Res. Transp. Bus. Manag. 24, 4–16 (2017)CrossRefGoogle Scholar
  14. Nataraj, S., Ferone, D., Quintero-Araujo, C., Juan, A., Festa, P.: Consolidation centers in city logistics: a cooperative approach based on the location routing problem. Int. J. Ind. Eng. Comput. 10(3), 393–404 (2019)Google Scholar
  15. Molina-Azorín, J., Claver-Cortés, E., López-Gamero, M., Tarí, J.: Green management and financial performance: a literature review. Manag. Decis. 47(7), 1080–1100 (2009)CrossRefGoogle Scholar
  16. Muñoz-Villamizar, A., Montoya-Torres, J., Vega-Mejía, C.: Non-collaborative versus collaborative last-mile delivery in urban systems with stochastic demands. Procedia CIRP 30, 263–268 (2015)CrossRefGoogle Scholar
  17. Muñoz-Villamizar, A., Montoya-Torres, J., Herazo-Padilla, N.: Mathematical programming modeling and resolution of the location-routing problem in urban logistics. Ingeniería y Universidad 18(2), 271–289 (2014)CrossRefGoogle Scholar
  18. Muñoz-Villamizar, A., Santos, J., Montoya-Torres, J., Ormazábal, M.: Environmental assessment using a lean based tool. Serv. Orientation Holonic and Multi-Agent Manuf. 762, 41–50 (2018)CrossRefGoogle Scholar
  19. Muñoz-Villamizar, A., Quintero-Araújo, C., Montoya-Torres, J., Faulin, J.: Short- and mid-term evaluation of the use of electric vehicles in urban freight transport collaborative networks: a case study. Int. J. Logistics Res. Appl. 22(3), 229–252 (2019)CrossRefGoogle Scholar
  20. Quak, H.: Sustainability of urban freight transport: Retail distribution and local regulations in cities (PhD thesis). ERIM, Rotterdam (2008)Google Scholar
  21. Renault Colombia (2018). Accessed 02 May 2019
  22. Reyes, D., Erera, A., Savelsbergh, M.: Complexity of routing problems with release dates and deadlines. Eur. J. Oper. Res. 266(1), 29–34 (2018)MathSciNetCrossRefGoogle Scholar
  23. Rao, C., Goh, M., Zhao, Y., Zheng, J.: Location selection of city logistics centers under sustainability. Transp. Res. Part D Transp. Environ. 36, 29–44 (2015)CrossRefGoogle Scholar
  24. Ubeda, S., Arcelus, F., Faulin, J.: Green logistics at Eroski: a case study. Int. J. Prod. Econ. 131(1), 44–51 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Operations and Supply Chain Management Research GroupEscuela Internacional de Ciencias Económicas Y Administrativas, Universidad de La SabanaChíaColombia
  2. 2.TECNUN Escuela de Ingenieros, Universidad de NavarraSan SebastianSpain
  3. 3.Grupo de Investigación En Sistemas Logísticos, Facultad de IngenieríaUniversidad de La SabanaChíaColombia

Personalised recommendations