Searching for Light Relics with the CMB

  • Benjamin WallischEmail author
Part of the Springer Theses book series (Springer Theses)


Fluctuations in the cosmic neutrino background are known to produce a phase shift in the acoustic peaks of the cosmic microwave background (CMB). It is through the sensitivity to this effect that the recent CMB data has provided a robust detection of free-streaming neutrinos. In this chapter, we revisit the phase shift of the CMB anisotropy spectrum as a probe of new physics. The phase shift is particularly interesting because its physical origin is strongly constrained by the analytic properties of the Green’s function of the gravitational potential. For adiabatic fluctuations, a phase shift requires modes that propagate faster than the speed of fluctuations in the photon-baryon plasma. This possibility is realized by free-streaming relativistic particles, such as neutrinos or other forms of dark radiation. Alternatively, a phase shift can arise from isocurvature fluctuations. We present simple models to illustrate each of these effects and provide observational constraints from the Planck temperature and polarization data on additional forms of radiation. We also estimate the capabilities of future CMB Stage-4 experiments. Whenever possible, we give analytic interpretations and consider possible implications of our results.


  1. 1.
    B. Follin, L. Knox, M. Millea, Z. Pan, First detection of the acoustic oscillation phase shift expected from the cosmic neutrino background. Phys. Rev. Lett. 115, 091301 (2015). arXiv:1503.07863 [astro-ph.CO]ADSCrossRefGoogle Scholar
  2. 2.
    D. Baumann, D. Green, J. Meyers, B. Wallisch, Phases of new physics in the CMB. JCAP 01, 007 (2016). arXiv:1508.06342 [astro-ph.CO]ADSCrossRefGoogle Scholar
  3. 3.
    Adapted from [2] with permission of IOP Publishing. Copyright by Sissa Medialab srl. All rights reservedGoogle Scholar
  4. 4.
    N. Aghanim et al. (Planck Collaboration), Planck 2015 results. XI. CMB power spectra, likelihoods and robustness of parameters. Astron. Astrophys. 594, A11 (2016). arXiv:1507.02704 [astro-ph.CO]
  5. 5.
    K. Abazajian et al. (CMB-S4 Collaboration), CMB-S4 Science Book, 1st edn. arXiv:1610.02743 [astro-ph.CO]
  6. 6.
    S. Bashinsky, U. Seljak, Neutrino perturbations in CMB anisotropy and matter clustering. Phys. Rev. D 69, 083002 (2004). arXiv:astro-ph/0310198 [astro-ph]ADSCrossRefGoogle Scholar
  7. 7.
    W. Hu, M. Fukugita, M. Zaldarriaga, M. Tegmark, CMB observables and their cosmological implications. Astrophys. J. 549, 669 (2001). arXiv:astro-ph/0006436 [astro-ph]
  8. 8.
    M. Doran, M. Lilley, The location of CMB peaks in a universe with dark energy. Mon. Not. Roy. Astron. Soc. 330, 965 (2002). arXiv:astro-ph/0104486 [astro-ph]ADSCrossRefGoogle Scholar
  9. 9.
    P. Corasaniti, A. Melchiorri, Testing cosmology with cosmic sound waves. Phys. Rev. D 77, 103507 (2008). arXiv:0711.4119 [astro-ph]ADSCrossRefGoogle Scholar
  10. 10.
    Z. Pan, L. Knox, B. Mulroe, A. Narimani, Cosmic microwave background acoustic peak locations. Mon. Not. Roy. Astron. Soc. 459, 2513 (2016). arXiv:1603.03091 [astro-ph.CO]ADSCrossRefGoogle Scholar
  11. 11.
    U. Seljak, Measuring polarization in the cosmic microwave background. Astrophys. J. 482, 6 (1997). arXiv:astro-ph/9608131 [astro-ph]ADSCrossRefGoogle Scholar
  12. 12.
    U. Seljak, M. Zaldarriaga, Signature of gravity waves in polarization of the microwave background. Phys. Rev. Lett. 78, 2054 (1997). arXiv:astro-ph/9609169 [astro-ph]ADSCrossRefGoogle Scholar
  13. 13.
    M. Zaldarriaga, U. Seljak, An all-sky analysis of polarization in the microwave background. Phys. Rev. D 55, 1830 (1997). arXiv:astro-ph/9609170 [astro-ph]ADSCrossRefGoogle Scholar
  14. 14.
    M. Kamionkowski, A. Kosowsky, A. Stebbins, Statistics of cosmic microwave background polarization. Phys. Rev. D 55, 7368 (1997). arXiv:astro-ph/9611125 [astro-ph]ADSCrossRefGoogle Scholar
  15. 15.
    Z. Hou, R. Keisler, L. Knox, M. Millea, C. Reichardt, How massless neutrinos affect the cosmic microwave background damping tail. Phys. Rev. D 87, 083008 (2013). arXiv:1104.2333 [astro-ph.CO]
  16. 16.
    F.-Y. Cyr-Racine, K. Sigurdson, Limits on neutrino-neutrino scattering in the early universe. Phys. Rev. D 90, 123533 (2014). arXiv:1306.1536 [astro-ph.CO]ADSCrossRefGoogle Scholar
  17. 17.
    M. Archidiacono, S. Hannestad, Updated constraints on non-standard neutrino interactions from Planck. JCAP 07, 046 (2014). arXiv:1311.3873 [astro-ph.CO]ADSCrossRefGoogle Scholar
  18. 18.
    I. Oldengott, C. Rampf, Y.Y.Y. Wong, Boltzmann hierarchy for interacting neutrinos I: formalism. JCAP 04, 016 (2015). arXiv:1409.1577 [astro-ph.CO]ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    M. Buen-Abad, G. Marques-Tavares, M. Schmaltz, Non-Abelian dark matter and dark radiation. Phys. Rev. D 92, 023531 (2015). arXiv:1505.03542 [hep-ph]ADSCrossRefGoogle Scholar
  20. 20.
    Z. Chacko, Y. Cui, S. Hong, T. Okui, Hidden dark matter sector, dark radiation and the CMB. Phys. Rev. D 92, 055033 (2015). arXiv:1505.04192 [hep-ph]ADSCrossRefGoogle Scholar
  21. 21.
    S. Weinberg, Adiabatic modes in cosmology. Phys. Rev. D 67, 123504 (2003). arXiv:astro-ph/0302326 [astro-ph]
  22. 22.
    P. Peter, J.-P. Uzan, Primordial Cosmology (Oxford University Press, Oxford, 2013)Google Scholar
  23. 23.
    L. Perotto, J. Lesgourgues, S. Hannestad, H. Tu, Y.Y.Y. Wong, Probing cosmological parameters with the CMB: forecasts from full Monte Carlo simulations. JCAP 10, 013 (2006). arXiv:astro-ph/0606227 [astro-ph]ADSCrossRefGoogle Scholar
  24. 24.
    W. Wu, J. Errard, C. Dvorkin, C. Kuo, A. Lee, P. McDonald, A. Slosar, O. Zahn, A guide to designing future ground-based cosmic microwave background experiments. Astrophys. J. 788, 138 (2014). arXiv:1402.4108 [astro-ph.CO]ADSCrossRefGoogle Scholar
  25. 25.
    D. Blas, J. Lesgourgues, T. Tram, The Cosmic Linear Anisotropy Solving System (CLASS) II: approximation schemes. JCAP 07, 034 (2011). arXiv:1104.2933 [astro-ph.CO]
  26. 26.
    B. Audren, J. Lesgourgues, K. Benabed, S. Prunet, Conservative constraints on early cosmology: an illustration of the MontePython cosmological parameter inference code. JCAP 02, 001 (2013). arXiv:1210.7183 [astro-ph.CO]
  27. 27.
    A. Gelman, D. Rubin, Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457 (1992)CrossRefGoogle Scholar
  28. 28.
    U. Seljak, Gravitational lensing effect on cosmic microwave background anisotropies: a power spectrum approach. Astrophys. J. 463, 1 (1996). arXiv:astro-ph/9505109 [astro-ph]ADSCrossRefGoogle Scholar
  29. 29.
    K. Smith, D. Hanson, M. LoVerde, C. Hirata, O. Zahn, Delensing CMB polarization with external datasets. JCAP 06, 014 (2012). arXiv:1010.0048 [astro-ph.CO]ADSCrossRefGoogle Scholar
  30. 30.
    W. Hu, T. Okamoto, Mass reconstruction with cosmic microwave background polarization. Astrophys. J. 574, 566 (2002). arXiv:astro-ph/0111606 [astro-ph]ADSCrossRefGoogle Scholar
  31. 31.
    T. Okamoto, W. Hu, Cosmic microwave background lensing reconstruction on the full sky. Phys. Rev. D 67, 083002 (2003). arXiv:astro-ph/0301031 [astro-ph]ADSCrossRefGoogle Scholar
  32. 32.
    C. Hirata, U. Seljak, Reconstruction of lensing from the cosmic microwave background polarization. Phys. Rev. D 68, 083002 (2003). arXiv:astro-ph/0306354 [astro-ph]ADSCrossRefGoogle Scholar
  33. 33.
    D. Green, J. Meyers, A. van Engelen, CMB delensing beyond the B-modes. JCAP 12, 005 (2017). arXiv:1609.08143 [astro-ph.CO]ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    N. Bell, E. Pierpaoli, K. Sigurdson, Cosmological signatures of interacting neutrinos. Phys. Rev. D 73, 063523 (2006). arXiv:astro-ph/0511410 [astro-ph]ADSCrossRefGoogle Scholar
  35. 35.
    A. Friedland, K. Zurek, S. Bashinsky, Constraining models of neutrino mass and neutrino interactions with the Planck satellite. arXiv:0704.3271 [astro-ph]
  36. 36.
    B. Follin, L. Knox, M. Millea, Z. Pan, Private communication (2015)Google Scholar
  37. 37.
    W. Hu, Dark synergy: gravitational lensing and the CMB. Phys. Rev. D 65, 023003 (2002). arXiv:astro-ph/0108090 [astro-ph]ADSCrossRefGoogle Scholar
  38. 38.
    M. Schmittfull, A. Challinor, D. Hanson, A. Lewis, Joint analysis of CMB temperature and lensing-reconstruction power spectra. Phys. Rev. D 88, 063012 (2013). arXiv:1308.0286 [astro-ph.CO]ADSCrossRefGoogle Scholar
  39. 39.
    D. Eisenstein, H.-J. Seo, E. Sirko, D. Spergel, Improving cosmological distance measurements by reconstruction of the baryon acoustic peak. Astrophys. J. 664, 675 (2007). arXiv:astro-ph/0604362 [astro-ph]ADSCrossRefGoogle Scholar
  40. 40.
    C. Brust, D.E. Kaplan, M. Walters, New light species and the CMB. JHEP 12, 058 (2013). arXiv:1303.5379 [hep-ph]ADSCrossRefGoogle Scholar
  41. 41.
    W. Fischler, J. Meyers, Dark radiation emerging after big bang nucleosynthesis? Phys. Rev. D 83, 063520 (2011). arXiv:1011.3501 [astro-ph.CO]ADSCrossRefGoogle Scholar
  42. 42.
    J. Bernstein, L. Brown, G. Feinberg, Cosmological helium production simplified. Rev. Mod. Phys. 61, 25 (1989)ADSCrossRefGoogle Scholar
  43. 43.
    R. Cyburt, B. Fields, K. Olive, T.-H. Yeh, Big bang nucleosynthesis: 2015. Rev. Mod. Phys. 88, 015004 (2016). arXiv:1505.01076 [astro-ph.CO]ADSCrossRefGoogle Scholar
  44. 44.
    D. Cadamuro, S. Hannestad, G. Raffelt, J. Redondo, Cosmological bounds on sub-MeV mass axions. JCAP 02, 003 (2011). arXiv:1011.3694 [hep-ph]ADSCrossRefGoogle Scholar
  45. 45.
    N. Padmanabhan, D. Finkbeiner, Detecting dark matter annihilation with CMB polarization: signatures and experimental prospects. Phys. Rev. D 72, 023508 (2005). arXiv:astro-ph/0503486 [astro-ph]
  46. 46.
    P. Zhang, M. Liguori, R. Bean, S. Dodelson, Probing gravity at cosmological scales by measurements which test the relationship between gravitational lensing and matter overdensity. Phys. Rev. Lett. 99, 141302 (2007). arXiv:0704.1932 [astro-ph]ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Natural SciencesInstitute for Advanced StudyPrincetonUSA
  2. 2.Department of PhysicsUniversity of CaliforniaSan Diego La JollaUSA

Personalised recommendations