Review of Modern Cosmology

  • Benjamin WallischEmail author
Part of the Springer Theses book series (Springer Theses)


Cosmology is the quantitative study of the structure and evolution of the universe. In the last few decades, it has emerged as a data-driven field of study which has revolutionized our understanding of the cosmos. In this chapter, we discuss both the theory and the observations underlying modern cosmology. We consider in particular the basics underlying the standard model of cosmology, the thermal history of the universe and the fluctuations around the smooth universe. In addition, we review the main cosmological observables: the cosmic microwave background, the large-scale structure of the universe and the baryon acoustic oscillations.


  1. 1.
    A. Riess et al. (Supernova Search Team), Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998). arXiv:astro-ph/9805201 [astro-ph]
  2. 2.
    S. Perlmutter et al. (Supernova Cosmology Project), Measurements of \(\Omega \) and \(\Lambda \) from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999). arXiv:astro-ph/9812133 [astro-ph]
  3. 3.
    G. Smoot et al. (COBE Collaboration), Structure in the COBE differential microwave radiometer first-year maps. Astrophys. J. 396, L1 (1992)Google Scholar
  4. 4.
    C. Bennett et al., Four-year COBE DMR cosmic microwave background observations maps and basic results. Astrophys. J. 464, L1 (1996). arXiv:astro-ph/9601067 [astro-ph]
  5. 5.
    D. Spergel et al. (WMAP Collaboration), First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters. Astrophys. J. Suppl. 148, 175 (2003). arXiv:astro-ph/0302209 [astro-ph]
  6. 6.
    G. Hinshaw et al. (WMAP Collaboration), Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results. Astrophys. J. Suppl. 208, 19 (2013). arXiv:1212.5226 [astro-ph.CO]
  7. 7.
    P.A.R. Ade et al. (Planck Collaboration), Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 571, A16 (2014). arXiv:1303.5076 [astro-ph.CO]
  8. 8.
    P.A.R. Ade et al. (Planck Collaboration), Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016). arXiv:1502.01589 [astro-ph.CO]
  9. 9.
    M. Colless et al. (2dFGRS Collaboration), The 2dF Galaxy Redshift Survey: spectra and redshifts. Mon. Not. Roy. Astron. Soc. 328, 1039 (2001). arXiv:astro-ph/0106498 [astro-ph]
  10. 10.
    C. Stoughton et al. (SDSS Collaboration), The Sloan Digital Sky Survey: early data release. Astron. J. 123, 485 (2002)Google Scholar
  11. 11.
    S. Alam et al. (BOSS Collaboration), The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample. Mon. Not. Roy. Astron. Soc. 470, 2617 (2017). arXiv:1607.03155 [astro-ph.CO]
  12. 12.
    A. Einstein, Die Grundlage der Allgemeinen Relativitätstheorie. Ann. Phys. 49, 769 (1916)CrossRefzbMATHGoogle Scholar
  13. 13.
    A. Friedmann, Über die Krümmung des Raumes. Z. Phys. 10, 377 (1922)CrossRefADSzbMATHGoogle Scholar
  14. 14.
    D. Weinberg, M. Mortonson, D. Eisenstein, C. Hirata, A. Riess, E. Rozo, Observational probes of cosmic acceleration. Phys. Rept. 530, 87 (2013). arXiv:1201.2434 [astro-ph.CO]CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    T. Abbott et al. (DES Collaboration), Dark Energy Survey year 1 results: cosmological constraints from galaxy clustering and weak lensing. Phys. Rev. D 98, 043526 (2018). arXiv:1708.01530 [astro-ph.CO]
  16. 16.
    D. Baumann, TASI Lectures on Inflation. arXiv:0907.5424 [hep-th]
  17. 17.
    C. Patrignani et al. (Particle Data Group), Review of particle physics. Chin. Phys. C 40, 100001 (2016)Google Scholar
  18. 18.
    D. Fixsen, The temperature of the cosmic microwave background. Astrophys. J. 707, 916 (2009). arXiv:0911.1955 [astro-ph.CO]CrossRefADSGoogle Scholar
  19. 19.
    E. Aver, K. Olive, E. Skillman, The effects of He-I \(\lambda \) 10830 on helium abundance determinations. JCAP 07, 011 (2015). arXiv:1503.08146 [astro-ph.CO]CrossRefADSGoogle Scholar
  20. 20.
    S. Borsanyi et al., Calculation of the axion mass based on high-temperature lattice quantum chromodynamics. Nature 539, 69 (2016). arXiv:1606.07494 [hep-lat]CrossRefADSGoogle Scholar
  21. 21.
    A. Penzias, R. Wilson, A measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J. 142, 419 (1965)CrossRefADSGoogle Scholar
  22. 22.
    D. Fixsen, E. Cheng, J. Gales, J. Mather, R. Shafer, E. Wright, The cosmic microwave background spectrum from the full COBE FIRAS dataset. Astrophys. J. 473, 576 (1996). arXiv:astro-ph/9605054 [astro-ph]
  23. 23.
    J. Bardeen, Gauge invariant cosmological perturbations. Phys. Rev. D 22, 1882 (1980)CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    H. Kodama, M. Sasaki, Cosmological perturbation theory. Prog. Theor. Phys. Suppl. 78, 1 (1984)CrossRefADSGoogle Scholar
  25. 25.
    V. Mukhanov, H. Feldman, R. Brandenberger, Theory of cosmological perturbations. Phys. Rept. 215, 203 (1992)CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    C.-P. Ma, E. Bertschinger, Cosmological perturbation theory in the synchronous and conformal Newtonian gauges. Astrophys. J. 455, 7 (1995). arXiv:astro-ph/9506072 [astro-ph]
  27. 27.
    S. Bashinsky, U. Seljak, Neutrino perturbations in CMB anisotropy and matter clustering. Phys. Rev. D 69, 083002 (2004). arXiv:astro-ph/0310198 [astro-ph]
  28. 28.
    V. Mukhanov, Physical Foundations of Cosmology (Cambridge University Press, Cambridge, 2005)CrossRefzbMATHGoogle Scholar
  29. 29.
    K. Malik, D. Wands, Cosmological perturbations. Phys. Rept. 475, 1 (2009). arXiv:0809.4944 [astro-ph]
  30. 30.
    S. Weinberg, Cosmological fluctuations of short wavelength. Astrophys. J. 581, 810 (2002). arXiv:astro-ph/0207375 [astro-ph]
  31. 31.
    W. Hu, Wandering in the background: a CMB explorer. Ph.D. Thesis, University of California, Berkeley (1995). arXiv:astro-ph/9508126 [astro-ph]
  32. 32.
    W. Hu, S. Dodelson, Cosmic microwave background anisotropies. Ann. Rev. Astron. Astrophys. 40, 171 (2002). arXiv:astro-ph/0110414 [astro-ph]
  33. 33.
    A. Challinor, H. Peiris, Lecture notes on the physics of cosmic microwave background anisotropies. AIP Conf. Proc. 1132, 86 (2009). arXiv:0903.5158 [astro-ph.CO]CrossRefADSGoogle Scholar
  34. 34.
    A. Lewis, A. Challinor, A. Lasenby, Efficient computation of CMB anisotropies in closed FRW models. Astrophys. J. 538, 473 (2000). arXiv:astro-ph/9911177 [astro-ph]
  35. 35.
    D. Blas, J. Lesgourgues, T. Tram, The Cosmic Linear Anisotropy Solving System (CLASS) II: approximation schemes. JCAP 07, 034 (2011). arXiv:1104.2933 [astro-ph.CO]
  36. 36.
    M. Zaldarriaga, D. Harari, Analytic approach to the polarization of the cosmic microwave background in flat and open universes. Phys. Rev. D 52, 3276 (1995). arXiv:astro-ph/9504085 [astro-ph]
  37. 37.
    S. Bashinsky, E. Bertschinger, Dynamics of cosmological perturbations in position space. Phys. Rev. D 65, 123008 (2002). arXiv:astro-ph/0202215 [astro-ph]
  38. 38.
    D. Eisenstein, H.-J. Seo, M. White, On the robustness of the acoustic scale in the low-redshift clustering of matter. Astrophys. J. 664, 660 (2007). arXiv:astro-ph/0604361 [astro-ph]CrossRefADSGoogle Scholar
  39. 39.
    Adapted from [38] with permission. Copyright by the American Astronomical SocietyGoogle Scholar
  40. 40.
    S. Weinberg, Cosmology (Oxford University Press, Oxford, 2008)zbMATHGoogle Scholar
  41. 41.
    Z. Slepian, D. Eisenstein, A simple analytic treatment of linear growth of structure with baryon acoustic oscillations. Mon. Not. Roy. Astron. Soc. 457, 24 (2016). arXiv:1509.08199 [astro-ph.CO]CrossRefADSGoogle Scholar
  42. 42.
    M. Bartelmann, P. Schneider, Weak gravitational lensing. Phys. Rept. 340, 291 (2001). arXiv:astro-ph/9912508 [astro-ph]CrossRefADSzbMATHGoogle Scholar
  43. 43.
    J. Carlstrom, G. Holder, E. Reese, Cosmology with the Sunyaev-Zel’dovich effect. Ann. Rev. Astron. Astrophys. 40, 643 (2002). arXiv:astro-ph/0208192 [astro-ph]CrossRefADSGoogle Scholar
  44. 44.
    S. Furlanetto, S.P. Oh, F. Briggs, Cosmology at low frequencies: the 21 cm transition and the high-redshift universe. Phys. Rept. 433, 181 (2006). arXiv:astro-ph/0608032 [astro-ph]CrossRefADSGoogle Scholar
  45. 45.
    M. Kilbinger, Cosmology with cosmic shear observations: a review. Rept. Prog. Phys. 78, 086901 (2015). arXiv:1411.0115 [astro-ph.CO]CrossRefADSMathSciNetGoogle Scholar
  46. 46.
    W. Hu, M. White, A CMB polarization primer. New Astron. 2, 323 (1997). arXiv:astro-ph/9706147 [astro-ph]CrossRefADSGoogle Scholar
  47. 47.
    S. Dodelson, Modern Cosmology (Academic Press, San Diego, 2003)Google Scholar
  48. 48.
    S. Staggs, J. Dunkley, L. Page, Recent discoveries from the cosmic microwave background: a review of recent progress. Rept. Prog. Phys. 81, 044901 (2018)CrossRefADSGoogle Scholar
  49. 49.
    R. Adam et al. (Planck Collaboration), Planck 2015 results. VIII. High frequency instrument data processing: calibration and maps. Astron. Astrophys. 594, A8 (2016). arXiv:1502.01587 [astro-ph.CO]
  50. 50.
    Map of CMB temperature from SMICA,, Original image credit: ESA and the Planck collaboration
  51. 51.
    R. Adam et al. (Planck Collaboration), Planck 2015 results. I. Overview of products and scientific results. Astron. Astrophys. 594, A1 (2016). arXiv:1502.01582 [astro-ph.CO]
  52. 52.
    N. Aghanim et al., (Planck Collaboration), Planck 2015 results. XI. CMB power spectra, likelihoods and robustness of parameters. Astron. Astrophys. 594, A11 (2015). arXiv:1507.02704 [astro-ph.CO]
  53. 53.
    A. Miller et al., A Measurement of the Angular Power Spectrum of the CMB from \(\ell \) = 100 to 400. Astrophys. J. 524, L1 (1999). arXiv:astro-ph/9906421 [astro-ph]
  54. 54.
    G. Hinshaw et al. (WMAP Collaboration), First year wilkinson microwave anisotropy probe (WMAP) observations: the angular power spectrum. Astrophys. J. Suppl. 148, 135 (2003).arXiv:astro-ph/0302217 [astro-ph]Google Scholar
  55. 55.
    P. de Bernardis et al. (BOOMERanG Collaboration), A flat universe from high-resolution maps of the cosmic microwave background radiation. Nature 404, 955 (2000). arXiv:astroph/0004404 [astro-ph]
  56. 56.
    J. Kovac, E. Leitch, C. Pryke, J. Carlstrom, N. Halverson, W. Holzapfel, Detection of polarization in the cosmic microwave background using DASI. Nature 420, 772 (2002). arXiv:astro-ph/0209478 [astro-ph]
  57. 57.
    J. Bond, G. Efstathiou, Cosmic background radiation anisotropies in universes dominated by non-baryonic dark matter. Astrophys. J. 285, L45 (1984)CrossRefADSGoogle Scholar
  58. 58.
    A. Polnarev, Polarization and anisotropy induced in the microwave background by cosmological gravitational waves. Astron. Zh. 62, 1041 (1985)ADSGoogle Scholar
  59. 59.
    U. Seljak, Measuring polarization in the cosmic microwave background. Astrophys. J. 482, 6 (1997). arXiv:astro-ph/9608131 [astro-ph]
  60. 60.
    M. Zaldarriaga, U. Seljak, An all-sky analysis of polarization in the microwave background. Phys. Rev. D 55, 1830 (1997). arXiv:astro-ph/9609170 [astro-ph]CrossRefADSGoogle Scholar
  61. 61.
    M. Kamionkowski, A. Kosowsky, A. Stebbins, Statistics of cosmic microwave background polarization. Phys. Rev. D 55, 7368 (1997). arXiv:astro-ph/9611125 [astro-ph]CrossRefADSGoogle Scholar
  62. 62.
    A. Lewis, A. Challinor, Weak gravitational lensing of the CMB. Phys. Rept. 429, 1 (2006). arXiv:astro-ph/0601594 [astro-ph]CrossRefADSGoogle Scholar
  63. 63.
    W. Hu, T. Okamoto, Mass reconstruction with cosmic microwave background polarization. Astrophys. J. 574, 566 (2002). arXiv:astro-ph/0111606 [astro-ph]CrossRefADSGoogle Scholar
  64. 64.
    L. Knox, Y.-S. Song, A limit on the detectability of the energy scale of inflation. Phys. Rev. Lett. 89, 011303 (2002). arXiv:astro-ph/0202286 [astro-ph]CrossRefADSGoogle Scholar
  65. 65.
    C. Hirata, U. Seljak, Reconstruction of lensing from the cosmic microwave background polarization. Phys. Rev. D 68, 083002 (2003). arXiv:astro-ph/0306354 [astro-ph]CrossRefADSGoogle Scholar
  66. 66.
    D. Green, J. Meyers, A. van Engelen, CMB delensing beyond the B-modes. JCAP 12, 005 (2017). arXiv:1609.08143 [astro-ph.CO]CrossRefADSMathSciNetGoogle Scholar
  67. 67.
    N. Sehgal, M. Madhavacheril, B. Sherwin, A. van Engelen, Internal delensing of cosmic microwave background acoustic peaks. Phys. Rev. D 95, 103512 (2017). arXiv:1612.03898 [astro-ph.CO]CrossRefADSGoogle Scholar
  68. 68.
    J. Carron, A. Lewis, A. Challinor, Internal delensing of Planck CMB temperature and polarization. JCAP 05, 035 (2017). arXiv:1701.01712 [astro-ph.CO]
  69. 69.
    P.A.R. Ade et al. (Planck Collaboration), Planck 2015 results. XV. Gravitational lensing. Astron. Astrophys. 594, A15 (2016). arXiv:1502.01591 [astro-ph.CO]
  70. 70.
    The SDSS’s map of the universe,, Original image credit: M. Blanton and SDSS
  71. 71.
    Adapted from [78] with permission. Copyright by the American Astronomical SocietyGoogle Scholar
  72. 72.
    P. McDonald et al. (SDSS Collaboration), The Lyman-\(\alpha \) forest power spectrum from the Sloan Digital Sky Survey. Astrophys. J. Suppl. 163, 80 (2006). arXiv:astro-ph/0405013 [astro-ph]
  73. 73.
    A. Vikhlinin et al., Chandra Cluster Cosmology Project III: cosmological parameter constraints. Astrophys. J. 692, 1060 (2009). arXiv:0812.2720 [astro-ph]
  74. 74.
    B. Reid et al., Cosmological constraints from the clustering of the Sloan Digital Sky Survey DR7 luminous red galaxies. Mon. Not. Roy. Astron. Soc. 404, 60 (2010). arXiv:0907.1659 [astro-ph.CO]
  75. 75.
    N. Sehgal et al., The Atacama Cosmology Telescope: cosmology from galaxy clusters detected via the Sunyaev-Zel’dovich effect. Astrophys. J. 732, 44 (2011). arXiv:1010.1025 [astro-ph.CO]
  76. 76.
    S. Das et al., Detection of the power spectrum of cosmic microwave background lensing by the Atacama Cosmology Telescope. Phys. Rev. Lett. 107, 021301 (2011). arXiv:1103.2124 [astro-ph.CO]
  77. 77.
    J. Tinker et al., Cosmological constraints from galaxy clustering and the mass-to-number ratio of galaxy clusters. Astrophys. J. 745, 16 (2012). arXiv:1104.1635 [astro-ph.CO]CrossRefADSGoogle Scholar
  78. 78.
    R. Hložek et al., The atacama cosmology telescope: a measurement of the primordial power spectrum. Astrophys. J. 749, 90 (2012). arXiv:1105.4887 [astro-ph.CO]CrossRefADSGoogle Scholar
  79. 79.
    F. Bernardeau, S. Colombi, E. Gaztanaga, R. Scoccimarro, Large-scale structure of the universe and cosmological perturbation theory. Phys. Rept. 367, 1 (2002). arXiv:astroph/0112551 [astro-ph]
  80. 80.
    M. Crocce, R. Scoccimarro, Renormalized cosmological perturbation theory. Phys. Rev. D 73, 063519 (2006). arXiv:astro-ph/0509418 [astro-ph]CrossRefADSGoogle Scholar
  81. 81.
    D. Baumann, A. Nicolis, L. Senatore, M. Zaldarriaga, Cosmological non-linearities as an effective fluid. JCAP 07, 051 (2012). arXiv:1004.2488 [astro-ph.CO]CrossRefADSGoogle Scholar
  82. 82.
    J. Carrasco, M. Hertzberg, L. Senatore, The effective field theory of cosmological large-scale structures. JHEP 09, 082 (2012). arXiv:1206.2926 [astro-ph.CO]CrossRefADSMathSciNetzbMATHGoogle Scholar
  83. 83.
    M. Bartelmann, F. Fabis, D. Berg, E. Kozlikin, R. Lilow, C. Viermann, A microscopic, non-equilibrium, statistical field theory for cosmic structure formation. New J. Phys. 18, 043020 (2016). arXiv:1411.0806 [cond-mat.stat-mech]
  84. 84.
    D. Blas, M. Garny, M.M. Ivanov, S. Sibiryakov, Time-sliced perturbation theory for large-scale structure I: general formalism. JCAP 07, 052 (2016). arXiv:1512.05807 [astro-ph.CO]CrossRefADSMathSciNetGoogle Scholar
  85. 85.
    V. Desjacques, D. Jeong, F. Schmidt, Large-scale galaxy bias. Phys. Rept. 733, 1 (2018). arXiv:1611.09787 [astro-ph.CO]CrossRefADSMathSciNetzbMATHGoogle Scholar
  86. 86.
    D. Eisenstein et al. (SDSS Collaboration), Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 633, 560 (2005). arXiv:astro-ph/0501171 [astro-ph]
  87. 87.
    S. Cole et al. (2dFGRS Collaboration), The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final dataset and cosmological implications. Mon. Not. Roy. Astron. Soc. 362, 505 (2005). arXiv:astro-ph/0501174 [astro-ph]
  88. 88.
    Adapted from [99, 100] with permission of Oxford University Press on behalf of the Royal Astronomical SocietyGoogle Scholar
  89. 89.
    M. Crocce, R. Scoccimarro, Non-linear evolution of baryon acoustic oscillations. Phys. Rev. D 77, 023533 (2008). arXiv:0704.2783 [astro-ph]CrossRefADSGoogle Scholar
  90. 90.
    N. Sugiyama, D. Spergel, How does non-linear dynamics affect the baryon acoustic oscillation? JCAP 02, 042 (2014). arXiv:1306.6660 [astro-ph.CO]CrossRefADSMathSciNetGoogle Scholar
  91. 91.
    H.-J. Seo, D. Eisenstein, Improved forecasts for the baryon acoustic oscillations and cosmological distance scale. Astrophys. J. 665, 14 (2007). arXiv:astro-ph/0701079 [astro-ph]CrossRefADSGoogle Scholar
  92. 92.
    T. Baldauf, M. Mirbabayi, M. Simonović, M. Zaldarriaga, Equivalence Principle and the Baryon Acoustic Peak. Phys. Rev. D 92, 043514 (2015). arXiv:1504.04366 [astro-ph.CO]
  93. 93.
    D. Blas, M. Garny, M. Ivanov, S. Sibiryakov, Time-sliced perturbation theory II: baryon acoustic oscillations and infrared resummation. JCAP 07, 028 (2016). arXiv:1605.02149 [astro-ph.CO]CrossRefADSMathSciNetGoogle Scholar
  94. 94.
    D. Eisenstein, H.-J. Seo, E. Sirko, D. Spergel, Improving cosmological distance measurements by reconstruction of the baryon acoustic peak. Astrophys. J. 664, 675 (2007). arXiv:astro-ph/0604362 [astro-ph]CrossRefADSGoogle Scholar
  95. 95.
    N. Padmanabhan, X. Xu, D. Eisenstein, R. Scalzo, A. Cuesta, K. Mehta, E. Kazin, A two-percent distance to z = 0.35 by reconstructing baryon acoustic oscillations – I. Methods and application to the Sloan Digital Sky Survey. Mon. Not. Roy. Astron. Soc. 427, 2132 (2012). arXiv:1202.0090 [astro-ph.CO]
  96. 96.
    B. Sherwin, M. Zaldarriaga, The shift of the baryon acoustic oscillation scale: a simple physical picture. Phys. Rev. D 85, 103523 (2012). arXiv:1202.3998 [astro-ph.CO]CrossRefADSGoogle Scholar
  97. 97.
    M. Schmittfull, Y. Feng, F. Beutler, B. Sherwin, M.Y. Chu, Eulerian BAO reconstructions and N-point statistics. Phys. Rev. D 92, 123522 (2015). arXiv:1508.06972 [astro-ph.CO]CrossRefADSGoogle Scholar
  98. 98.
    H.-J. Seo, F. Beutler, A. Ross, S. Saito, Modelling the reconstructed BAO in Fourier space. Mon. Not. Roy. Astron. Soc. 460, 2453 (2016). arXiv:1511.00663 [astro-ph.CO]
  99. 99.
    F. Beutler et al. (BOSS Collaboration), The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in Fourier space. Mon. Not. Roy. Astron. Soc. 464, 3409 (2017). arXiv:1607.03149 [astro-ph.CO]
  100. 100.
    A. Ross et al. (BOSS Collaboration), The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: observational systematics and baryon acoustic oscillations in the correlation function. Mon. Not. Roy. Astron. Soc. 464, 1168 (2017). arXiv:1607.03145 [astro-ph.CO]
  101. 101.
    M. Vargas-Magaña et al. (BOSS Collaboration), The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: theoretical systematics and baryon acoustic oscillations in the galaxy correlation function. Mon. Not. Roy. Astron. Soc. 477, 1153 (2018). arXiv:1610.03506 [astro-ph.CO]
  102. 102.
    A. Riess et al., A 2.4 % determination of the local value of the Hubble constant. Astrophys. J. 826, 56 (2016). arXiv:1604.01424 [astro-ph.CO]
  103. 103.
    D. Scott, The standard model of cosmology: a skeptic’s guide, arXiv:1804.01318 [astro-ph.CO]
  104. 104.
    D. Baumann, D. Green, M. Zaldarriaga, Phases of new physics in the BAO spectrum. JCAP 11, 007 (2017). arXiv:1703.00894 [astro-ph.CO]

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Natural SciencesInstitute for Advanced StudyPrincetonUSA
  2. 2.Department of PhysicsUniversity of CaliforniaSan Diego La JollaUSA

Personalised recommendations