# An Overview of Polynomially Computable Characteristics of Special Interval Matrices

Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 835)

## Abstract

It is well known that many problems in interval computation are intractable, which restricts our attempts to solve large problems in reasonable time. This does not mean, however, that all problems are computationally hard. Identifying polynomially solvable classes thus belongs to important current trends. The purpose of this paper is to review some of such classes. In particular, we focus on several special interval matrices and investigate their convenient properties. We consider tridiagonal matrices, {M, H, P, B}-matrices, inverse M-matrices, inverse nonnegative matrices, nonnegative matrices, totally positive matrices and some others. We focus in particular on computing the range of the determinant, eigenvalues, singular values, and selected norms. Whenever possible, we state also formulae for determining the inverse matrix and the hull of the solution set of an interval system of linear equations. We survey not only the known facts, but we present some new views as well.

## Keywords

Interval computation Computational complexity Tridiagonal matrix M-matrix H-matrix P-matrix Inverse nonnegative matrix

## References

1. 1.
M. Adm, J. Garloff, Intervals of totally nonnegative matrices. Linear Algebr. Appl. 439(12), 3796–3806 (2013)
2. 2.
G. Alefeld, Über die Durchführbarkeit des Gaußschen Algorithmus bei Gleichungen mit Intervallen als Koeffizienten. Comput. Suppl. 1, 15–19 (1977)
3. 3.
G. Alefeld, V. Kreinovich, G. Mayer, On the shape of the symmetric, persymmetric, and skew-symmetric solution set. SIAM J. Matrix Anal. Appl. 18(3), 693–705 (1997)
4. 4.
G. Alefeld, V. Kreinovich, G. Mayer, On the solution sets of particular classes of linear interval systems. J. Comput. Appl. Math. 152(1–2), 1–15 (2003)
5. 5.
I. Bar-On, B. Codenotti, M. Leoncini, Checking robust nonsingularity of tridiagonal matrices in linear time. BIT 36(2), 206–220 (1996)
6. 6.
W. Barth, E. Nuding, Optimale Lösung von Intervallgleichungssystemen. Computing 12, 117–125 (1974)
7. 7.
H. Beeck, Zur scharfen Aussenabschätzung der Lösungsmenge bei linearen Intervallgleichungssystemen. ZAMM, Z. Angew. Math. Mech. 54, T208–T209 (1974)Google Scholar
8. 8.
S. Białas, J. Garloff, Intervals of P-matrices and related matrices. Linear Algebr. Appl. 58, 33–41 (1984)
9. 9.
G.E. Coxson, The P-matrix problem is co-NP-complete. Math. Program. 64, 173–178 (1994)
10. 10.
L. Cvetković, V. Kostić, S. Rauški, A new subclass of H-matrices. Appl. Math. Comput. 208(1), 206–210 (2009)
11. 11.
S.M. Fallat, C.R. Johnson, Totally Nonnegative Matrices (Princeton University Press, Princeton, NJ, 2011)
12. 12.
M. Fiedler, J. Nedoma, J. Ramík, J. Rohn, K. Zimmermann, Linear Optimization Problems with Inexact Data (Springer, New York, 2006)
13. 13.
J. Garloff, Totally nonnegative interval matrices, in ed. by K. Nickel, Interval Mathematics 1980, (Academic, 1980), pp. 317–327Google Scholar
14. 14.
J. Garloff, Criteria for sign regularity of sets of matrices. Linear Algebr. Appl. 44, 153–160 (1982)
15. 15.
J. Garloff, M. Adm, J. Titi, A survey of classes of matrices possessing the interval property and related properties. Reliab. Comput. 22, 1–10 (2016)
16. 16.
D. Hartman, M. Hladík, Tight bounds on the radius of nonsingularity, in Scientific Computing, Computer Arithmetic, and Validated Numerics: 16th International Symposium, SCAN 2014 ed. by M. Nehmeier et al., Würzburg, Germany, September 21-26, LNCS, vol. 9553, (Springer, Berlin, 2016), pp. 109–115Google Scholar
17. 17.
D. Hartman, M. Hladík, Regularity radius: properties, approximation and a not a priori exponential algorithm. Electron. J. Linear Algebr. 33, 122–136 (2018)
18. 18.
M. Hladík, Complexity issues for the symmetric interval eigenvalue problem. Open Math. 13(1), 157–164 (2015)
19. 19.
M. Hladík, On relation between P-matrices and regularity of interval matrices, in Springer Proceedings in Mathematics & Statistics ed. by N. Bebiano, Applied and Computational Matrix Analysis, vol. 192, (Springer, Berlin, 2017), pp. 27–35Google Scholar
20. 20.
M. Hladík, Positive semidefiniteness and positive definiteness of a linear parametric interval matrix, in Constraint Programming and Decision Making: Theory and Applications, Studies in Systems, Decision and Control, vol. 100, ed. by M. Ceberio, V. Kreinovich (Springer, Cham, 2018), pp. 77–88
21. 21.
J. Horáček, M. Hladík, M. Černý, Interval linear algebra and computational complexity, in Springer Proceedings in Mathematics & Statistics ed. by N. Bebiano, Applied and Computational Matrix Analysis, vol. 192, (Springer, Berlin, 2017), pp. 37–66Google Scholar
22. 22.
J. Horáček, M. Hladík, J. Matějka, Determinants of interval matrices. Electron. J. Linear Algebr. 33, 99–112 (2018)
23. 23.
R.A. Horn, C.R. Johnson, Topics in Matrix Analysis (Cambridge University Press, 1991)Google Scholar
24. 24.
C.R. Johnson, R.L. Smith, Intervals of inverse M-matrices. Reliab. Comput. 8(3), 239–243 (2002)
25. 25.
C.R. Johnson, R.L. Smith, Inverse M-matrices, II. Linear Algebr. Appl. 435(5), 953–983 (2011)
26. 26.
O. Kosheleva, V. Kreinovich, G. Mayer, H. Nguyen, Computing the cube of an interval matrix is NP-hard. Proc. ACM Symp. Appl. Comput. 2, 1449–1453 (2005)Google Scholar
27. 27.
V. Kreinovich, A. Lakeyev, J. Rohn, P. Kahl, Computational Complexity and Feasibility of Data Processing and Interval Computations (Kluwer, Dordrecht, 1998)
28. 28.
J. Kuttler, A fourth-order finite-difference approximation for the fixed membrane eigenproblem. Math. Comput. 25(114), 237–256 (1971)
29. 29.
G. Mayer, Three short descriptions of the symmetric and of the skew-symmetric solution set. Linear Algebr. Appl. 475, 73–79 (2015)
30. 30.
D.N. Mohsenizadeh, L.H. Keel, S.P. Bhattacharyya, An extremal result for unknown interval linear systems. IFAC Proc. Vol. 47(3), 6502–6507 (2014)
31. 31.
A. Neumaier, Interval Methods for Systems of Equations (Cambridge University Press, Cambridge, 1990)
32. 32.
A. Neumaier, A simple derivation of the Hansen–Bliek–Rohn–Ning–Kearfott enclosure for linear interval equations. Reliab. Comput. 5(2), 131–136 (1999)
33. 33.
S. Ning, R.B. Kearfott, A comparison of some methods for solving linear interval equations. SIAM J. Numer. Anal. 34(4), 1289–1305 (1997)
34. 34.
J.M. Peña, A class of $$P$$-matrices with applications to the localization of the eigenvalues of a real matrix. SIAM J. Matrix Anal. Appl. 22(4), 1027–1037 (2001)
35. 35.
S. Poljak, J. Rohn, Checking robust nonsingularity is NP-hard. Math. Control Signals Syst. 6(1), 1–9 (1993)
36. 36.
E.D. Popova, Explicit characterization of a class of parametric solution sets. Comptes Rendus de L’Academie Bulg. des Sci. 62(10), 1207–1216 (2009)
37. 37.
J. Rohn, Checking positive definiteness or stability of symmetric interval matrices is NP-hard. Comment. Math. Univ. Carol. 35(4), 795–797 (1994)
38. 38.
J. Rohn, Positive definiteness and stability of interval matrices. SIAM J. Matrix Anal. Appl. 15(1), 175–184 (1994)
39. 39.
J. Rohn, Computing the norm $$\Vert A\Vert _{\infty,1}$$ is NP-hard. Linear Multilinear Algebr. 47(3), 195–204 (2000)
40. 40.
J. Rohn, R. Farhadsefat, Inverse interval matrix: a survey. Electron. J. Linear Algebr. 22, 704–719 (2011)
41. 41.
S.M. Rump, On P-matrices. Linear Algebr. Appl. 363, 237–250 (2003)