Advertisement

Free Surface Waves

  • Achim FeldmeierEmail author
Chapter
  • 56 Downloads
Part of the Theoretical and Mathematical Physics book series (TMP)

Abstract

This chapter treats waves that affect only relatively thin layers at the surface of a body of water, called free surface waves, and which therefore are essentially complementary to shallow water waves.

References

  1. Ahlfors, L.V. 1966. Complex analysis, 2nd ed. New York: McGraw-Hill.zbMATHGoogle Scholar
  2. Akers, B.F., D.M. Ambrose, and J.D. Wright. 2014. Gravity perturbed Crapper waves. Proceedings of the Royal Society A 470: 20130526.ADSMathSciNetCrossRefGoogle Scholar
  3. Amick, C.J., L.E. Fraenkel, and J.F. Toland. 1982. On the Stokes conjecture for the wave of extreme form. Acta Mathematica 148: 193.MathSciNetCrossRefGoogle Scholar
  4. Crapper, G.D. 1957. An exact solution for progressive capillary waves of arbitrary amplitude. Journal of Fluid Mechanics 2: 532.ADSMathSciNetCrossRefGoogle Scholar
  5. Crapper, G.D. 1984. Introduction to water waves. Hemel: Ellis Horwood Ltd.zbMATHGoogle Scholar
  6. Crew, S.C., and P.H. Trinh. 2016. New singularities for Stokes waves. Journal of Fluid Mechanics 798: 256.ADSMathSciNetCrossRefGoogle Scholar
  7. Duncan, J.H. 1981. An experimental investigation of breaking waves produced by a towed hydrofoil. Proceedings of the Royal Society of London A 377: 331.ADSCrossRefGoogle Scholar
  8. Dyachenko, S.A., P.M. Lushnikov, and A.O. Korotkevich. 2013. Complex singularity of a Stokes wave. JETP Letters 98: 675.ADSCrossRefGoogle Scholar
  9. Fraenkel, L.E. 2007. A constructive existence proof for the extreme Stokes wave. Archive for Rational Mechanics and Analysis 183: 187.ADSMathSciNetCrossRefGoogle Scholar
  10. Grant, M.A. 1973a. The singularity at the crest of a finite amplitude progressive Stokes wave. Journal of Fluid Mechanics 59: 257.ADSCrossRefGoogle Scholar
  11. Grant, M.A. 1973b. Standing Stokes waves of maximum height. Journal of Fluid Mechanics 60: 593.ADSCrossRefGoogle Scholar
  12. Jeffreys, H. 1924. On water waves near the shore. Philosophical Magazine Series 6, 48: 44.Google Scholar
  13. Keady, G., and J. Norbury. 1978. On the existence theory for irrotational water waves. Mathematical Proceedings of the Cambridge Philosophical Society 83: 137.ADSMathSciNetCrossRefGoogle Scholar
  14. Kinnersley, W. 1976. Exact large amplitude capillary waves on sheets of fluid. Journal of Fluid Mechanics 77: 229.ADSMathSciNetCrossRefGoogle Scholar
  15. Kinsman, B. 1965. Wind waves. Englewood Cliffs: Prentice-Hall.Google Scholar
  16. Kolscher, M. 1940. Unstetige Strömungen mit endlichem Totwasser. Luftfahrtforschung (Berlin-Adlershof) vol. 17, Lfg. 5, München: Oldenbourg.Google Scholar
  17. Kotschin, N.J., I.A. Kibel, and N.W. Rose. 1954. Theoretische Hydromechanik, vol. I. Berlin: Akademie-Verlag.Google Scholar
  18. Krasovskii, Yu.P. 1961. On the theory of steady-state waves of finite amplitude. U.S.S.R. Computational Mathematics and Mathematical Physics 1: 996.Google Scholar
  19. Lamb, H. 1932. Hydrodynamics. Cambridge: Cambridge University Press; New York: Dover (1945).Google Scholar
  20. Lighthill, J. 1978. Waves in fluids. Cambridge: Cambridge University Press.Google Scholar
  21. Liu, X. 2016. A laboratory study of spilling breakers in the presence of light-wind and surfactants. Journal of Geophysical Research: Oceans 121: 1846.ADSGoogle Scholar
  22. Longuet-Higgins, M.S. 1956. The refraction of sea waves in shallow water. Journal of Fluid Mechanics 1: 163.ADSMathSciNetCrossRefGoogle Scholar
  23. Longuet-Higgins, M.S. 1963. The generation of capillary waves by steep gravity waves. Journal of Fluid Mechanics 16: 138.ADSMathSciNetCrossRefGoogle Scholar
  24. Longuet-Higgins, M.S. 1973. On the form of the highest progressive and standing waves in deep water. Proceedings of the Royal Society of London A 331: 445.ADSCrossRefGoogle Scholar
  25. Longuet-Higgins, M.S. 1979. The almost-highest wave: A simple approximation. Journal of Fluid Mechanics 94: 269.ADSMathSciNetCrossRefGoogle Scholar
  26. Longuet-Higgins, M.S. 1988. Limiting forms for capillary-gravity waves. Journal of Fluid Mechanics 194: 351.ADSMathSciNetCrossRefGoogle Scholar
  27. Longuet-Higgins, M.S., and M.J.H. Fox. 1978. Theory of the almost-highest wave. Part 2. Matching and analytic extension. Journal of Fluid Mechanics85: 769.Google Scholar
  28. Longuet-Higgins, M.S., and R.W. Stewart. 1960. Changes in the form of short gravity waves on long waves and tidal currents. Journal of Fluid Mechanics 8: 565.ADSMathSciNetCrossRefGoogle Scholar
  29. Longuet-Higgins, M.S., and R.W. Stewart. 1961. The changes in amplitude of short gravity waves on steady non-uniform currents. Journal of Fluid Mechanics 10: 529.ADSMathSciNetCrossRefGoogle Scholar
  30. Longuet-Higgins, M.S., and J.S. Turner. 1974. An ‘entraining plume’ model of a spilling breaker. Journal of Fluid Mechanics 63: 1.ADSCrossRefGoogle Scholar
  31. Lushnikov, P.M. 2016. Structure and location of branch point singularities for Stokes waves on deep water. Journal of Fluid Mechanics 800: 557.ADSMathSciNetCrossRefGoogle Scholar
  32. Michell, J.H. 1893. The highest waves in water. Philosophical Magazine Series 5, 36: 430.Google Scholar
  33. Moore, D.W. 1979. The spontaneous appearance of a singularity in the shape of an evolving vortex sheet. Proceedings of the Royal Society of London A 365: 105.ADSMathSciNetCrossRefGoogle Scholar
  34. Phillips, O.M. 1963. On the attenuation of long gravity waves by short breaking waves. Journal of Fluid Mechanics 16: 321.ADSMathSciNetCrossRefGoogle Scholar
  35. Rankine, W.J. 1865. Supplement to a paper on stream-lines. Philosophical Magazine Series 4, 29: 25.Google Scholar
  36. Schwartz, L.W. 1972. Analytic continuation of Stokes’ expansion for gravity waves. Ph.D. dissertation, Stanford University.Google Scholar
  37. Schwartz, L.W. 1974. Computer extension and analytical continuation of Stokes’ expansion for gravity waves. Journal of Fluid Mechanics 62: 553.ADSCrossRefGoogle Scholar
  38. Schwartz, L.W., and J.D. Fenton. 1982. Strongly nonlinear waves. Annual Reviews in Fluid Mechanics 14: 39.ADSMathSciNetCrossRefGoogle Scholar
  39. Schwartz, L.W., and J.-M. Vanden-Broeck. 1979. Numerical solution of the exact equations for capillary-gravity waves. Journal of Fluid Mechanics 95: 119.ADSMathSciNetCrossRefGoogle Scholar
  40. Sommerfeld, A. 1957. Mechanik der deformierbaren Medien, 4th ed. Leipzig: Geest & Portig.Google Scholar
  41. Stoker, J.J. 1957. Water waves. The mathematical theory with applications. New York: Interscience Publishers.zbMATHGoogle Scholar
  42. Stokes, G.G. 1847 and 1880. On the theory of oscillatory waves. Transactions of the Cambridge Philosophical Society 8: 441 (1849); in Mathematical and physical papers by G.G. Stokes, vol. 1, 197 and 314 (Supplement). Cambridge: Cambridge University Press (1880).Google Scholar
  43. Stoneley, R. 1935. The refraction of a wave group. Mathematical Proceedings of the Cambridge Philosophical Society 31: 360.CrossRefGoogle Scholar
  44. Tanveer, S. 1991. Singularities in water waves and Rayleigh-Taylor instability. Proceedings of the Royal Society of London A 435: 137.ADSMathSciNetzbMATHGoogle Scholar
  45. Unna, P.J.H. 1942. Waves and tidal streams. Nature 149: 219.ADSCrossRefGoogle Scholar
  46. Vanden-Broeck, J.-M., and J.B. Keller. 1980. A new family of capillary waves. Journal of Fluid Mechanics 98: 161.ADSCrossRefGoogle Scholar
  47. Wehausen, J.V., and E.V. Laitone 1960. Surface waves. In Handbuch der Physik = Encyclopedia of Physics, vol. 3/9, Strömungsmechanik 3, ed. S. Flügge and C. Truesdell, 446. Berlin: Springer.Google Scholar
  48. Whitham, G.B. 1962. Mass, momentum and energy flux in water waves. Journal of Fluid Mechanics 12: 135.ADSMathSciNetCrossRefGoogle Scholar
  49. Williams, J.M. 1981. Limiting gravity waves in water of finite depth. Philosophical Transactions of the Royal Society of London A 302: 139.ADSMathSciNetzbMATHGoogle Scholar
  50. Williams, J.M. 1985. Near-limiting gravity waves in water of finite depth. Philosophical Transactions of the Royal Society of London A 314: 353.ADSCrossRefGoogle Scholar
  51. Wilton, J.R. 1915. On ripples. Philosophical Magazine Series 6, 29: 688.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut für Physik und AstronomieUniversität PotsdamPotsdamGermany

Personalised recommendations