Jets, Wakes, and Cavities

  • Achim FeldmeierEmail author
Part of the Theoretical and Mathematical Physics book series (TMP)


In the foregoing chapter, we encountered boundaries of solid bodies and obstacles that are fully covered by streamlines of the flow. There is no necessity that one single streamline follows the whole boundary of an obstacle. Instead, the streamline can detach from the solid body; it is then called a free streamline. Three standard flow scenarios with free streamlines are jets, wakes, and cavities, shown schematically in Fig. 5.1. The subsequent Figs. 5.2, 5.3, and 5.4 show examples of these flow types. From a theoretical perspective, the interest in free streamlines lies in the fact that they pose boundary value problems where the shape of the boundary is not known aforehand but has to be determined as part of the solution of the problem. This is also true for free surface waves, which are the subject of Chap.  8.


  1. Ahlfors, L.V. 1966. Complex analysis, 2nd ed. New York: McGraw-Hill.Google Scholar
  2. Batchelor, G.K. 1952. The effect of homogeneous turbulence on material lines and surfaces. Proceedings of the Royal Society of London A 213: 349.ADSMathSciNetCrossRefGoogle Scholar
  3. Bieberbach, L. 1921. Lehrbuch der Funktionentheorie, Band I, Elemente der Funktionentheorie. Leipzig: B.G. Teubner; Wiesbaden: Springer Fachmedien.Google Scholar
  4. Birkhoff, G.B., and J. Fisher. 1959. Do vortex sheets roll up? Rendiconti del Circolo Matematico di Palermo, Series 2, 8: 77.Google Scholar
  5. Birkhoff, G.B., and E.H. Zarantonello. 1957. Jets, waves and cavities. New York: Academic Press.Google Scholar
  6. Brennen, C.E. 1970. Cavity surface wave patterns and general appearance. Journal of Fluid Mechanics 44: 33.Google Scholar
  7. Brennen, C.E. 2013. Cavitation and bubble dynamics. New York: Cambridge University Press.Google Scholar
  8. Brillouin, M. 1911. Les surfaces de glissement de Helmholtz et la résistance des fluides. Annales de chimie et de physique 23: 145.zbMATHGoogle Scholar
  9. Cisotti, U. 1932. Scie limitate. Annali della Scuola Normale Superiore di Pisa, Classe di Scienca, Series 2, 1: 101.Google Scholar
  10. Copson, E.T. 1935. Theory of functions of a complex variable. Oxford: Oxford University Press.Google Scholar
  11. Courant, R. 1950. Dirichlet’s principle, conformal mapping, and minimal surfaces. New York: Interscience Publishers.Google Scholar
  12. Cox, A.D., and W.A. Clayden. 1958. Cavitating flow about a wedge at incidence. Journal of Fluid Mechanics 3: 615.ADSMathSciNetCrossRefGoogle Scholar
  13. Fabula, A.G. 1962. Thin-airfoil theory applied to hydrofoils with a single finite cavity and arbitrary free-streamline detachment. Journal of Fluid Mechanics 12: 227.ADSMathSciNetCrossRefGoogle Scholar
  14. Gilbarg, D. 1960. Jets and cavities. In Handbuch der Physik = Encyclopedia of physics, vol. 3/9, Strömungsmechanik 3, ed. S. Flügge and C. Truesdell, 311. Berlin: Springer.Google Scholar
  15. Golusin, G.M. 1957. Geometrische Funktionentheorie. Berlin: Deutscher Verlag der Wissenschaften.Google Scholar
  16. Havelock, T. 1929. Forced surface-waves on water. Philosophical Magazine Series 7, 8: 569.Google Scholar
  17. Helmholtz, H. 1868. Über diskontinuierliche Flüssigkeits-Bewegungen. Monatsberichte der Königlich preussischen Akademie der Wissenschaften zu Berlin 23: 215. On discontinuous movements of fluids. Philosophical Magazine Series 4, 36: 337.Google Scholar
  18. Kirchhoff, G. 1869. Zur Theorie freier Flüssigkeitsstrahlen. Journal für die reine und angewandte Mathematik 70: 289.MathSciNetzbMATHGoogle Scholar
  19. Kirchhoff, G. 1897. Vorlesungen über Mechanik, Lectures 21 and 22. Leipzig: Teubner.Google Scholar
  20. Kolscher, M. 1940. Unstetige Strömungen mit endlichem Totwasser. Luftfahrtforschung (Berlin-Adlershof) vol. 17, Lfg. 5, München: Oldenbourg.Google Scholar
  21. von Koppenfels, W., and F. Stallmann. 1959. Praxis der konformen Abbildung. Berlin: Springer.Google Scholar
  22. Lamb, H. 1932. Hydrodynamics. Cambridge: Cambridge University Press; New York: Dover (1945).Google Scholar
  23. Levi-Civita, T. 1907. Scie e leggi di resistenza. Rendiconti del Circolo Matematico di Palermo 23: 1Google Scholar
  24. Milne-Thomson, L.M. 1968. Theoretical hydrodynamics, 5th ed. London: Macmillan; New York: Dover (1996).Google Scholar
  25. Nehari, Z. 1952. Conformal mapping. New York: McGraw-Hill; New York: Dover (1975).Google Scholar
  26. Newman, J.N. 1965. Propagation of water waves over an infinite step. Journal of Fluid Mechanics 23: 399.ADSMathSciNetCrossRefGoogle Scholar
  27. Panofsky, W.K.H., and M. Phillips. 1962. Classical electricity and magnetism, 2nd ed. Reading: Addison-Wesley; Mineola: Dover (2005).Google Scholar
  28. Riabouchinsky, D. 1921. On steady fluid motions with free surfaces. Proceedings of the London Mathematical Society, Series 2, 19: 206.Google Scholar
  29. Schmieden, C. 1929. Die unstetige Strömung um einen Kreiszylinder. Ingenieur-Archiv = Archive of Applied Mechanics 1: 104.Google Scholar
  30. Schmieden, C. 1932. Über die Eindeutigkeit der Lösungen in der Theorie der unstetigen Strömungen. Ingenieur-Archiv = Archive of Applied Mechanics 3: 356.Google Scholar
  31. Villat, H.R.P. 1913. Sur le changement d’orientation d’un obstacle dans un courait fluide et sur quelques questions connexes. Annales de la faculté des sciences de Toulouse série3, 5: 375.Google Scholar
  32. Weinstein, A. 1924. Ein hydrodynamischer Unitätssatz. Mathematische Zeitschrift 19: 265.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut für Physik und AstronomieUniversität PotsdamPotsdamGermany

Personalised recommendations