Financing Forest Protection with Integrated REDD+ Markets in Brazil

  • Ronaldo Seroa da MottaEmail author
  • Pedro Moura Costa
  • Mariano Cenamo
  • Pedro Soares
  • Virgílio Viana
  • Victor Salviati
  • Paula Bernasconi
  • Alice Thuault
  • Plinio Ribeiro
Part of the Springer Climate book series (SPCL)


It is widely recognized that Brazil has achieved a great degree of greenhouse abatement mainly due the 70% reduction in the deforestation rate combining control instruments as the improvement of monitoring system and sanction enforcement on forest management plus restrictions to agricultural expansion in the region. Brazil’s INDC is even more ambitious with a target of 90% reduction. In addition to non-use values attached to biodiversity, forest protection generates important local use from extractive production, greenhouse gas mitigation and climate regulation effects on agriculture, cattle raising, and hydroelectricity production. But the incentive power of the current control measures of forest policies has reached its limit and requires a more complex set of incentives that internalize pricing signals. One way to pursue is to count payments for the performance on the reduction emission of forest deforestation and degradation (REDD+). The chapter, after reviewing estimates of the ancillary benefits from land use mitigation options in Brazil, presents an Integrated REDD+ that catalyzes the transfer of financial resources to the land use sector, while ensuring that non-REDD+ options continue to receive financial resources for the innovation and decarbonization of industrial, transportation, and energy activities.


  1. Agrawal A, Nepstad D, Chhatre A (2011) Reducing emissions from deforestation and forest degradation. Annu Rev Environ Resour 36:373–396CrossRefGoogle Scholar
  2. Andersen LE et al (2002) The dynamics of deforestation and economic growth in the Brazilian Amazon. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  3. Aukland L, Costa PM, Brown S (2003) A conceptual framework and its application for addressing leakage on avoided deforestation projects. Clim Pol 3(2):123–136CrossRefGoogle Scholar
  4. Barreto P, Araujo E (2012) O Brasil atingirá sua meta de redução do desmatamento? Imazon, Belém. Google Scholar
  5. Brazil (2014) Views of Brazil on the elements of the new agreement under the convention applicable to all parties. UNFCCCGoogle Scholar
  6. Britaldo SSF et al (2014) Cracking Brazil’s forest code. Science 344:363–364CrossRefGoogle Scholar
  7. Costa PM et al (2017) Integrated REDD+ markets: a financial model for forest protection and decarbonization. Brazil REDD Alliance, Rio de Janeiro. Google Scholar
  8. da Motta S (2018) R. Precificação do carbono: do protocolo de Quioto ao acordo de Paris, Capítulo 14. In: Frangetto FW, Veiga APB, Luedemann G (eds) Legado do MDL: impactos e lições aprendidas a partir da implementação do mecanismo de desenvolvimento limpo no Brasil. IPEA, BrasíliaGoogle Scholar
  9. Edwards R (2016) Linking REDD+ to support Brazil’s climate goals and implementation of the forest code. Forest Trends Association, WashingtonGoogle Scholar
  10. Gibbs HK et al (2015) Brazil’s Soy Moratorium. Science 347(6220):377–378CrossRefGoogle Scholar
  11. Greiner S et al (2017) CDM transition to Article 6 of the Paris Agreement – options report. Climate Focus, Amsterdam.
  12. Hargrave J, Kis-Katos K (2013) Economic causes of deforestation in the Brazilian Amazon: a panel data analysis for the 2000s. Environ Resour Econ 54(1):471–494CrossRefGoogle Scholar
  13. IETA (2016) A vision for the market provisions of the Paris Agreement. International, Emissions Trading Association, Geneva. Google Scholar
  14. Kurnianto S et al (2015) Carbon accumulation of tropical peatlands over millennia: a modeling approach. Glob Chang Biol 21:431–444CrossRefGoogle Scholar
  15. Lewinsohn TM, Prado PI (2005) How many species are there in Brazil? Conserv Biol 19(3):618–624Google Scholar
  16. Malhi Y et al (2008) Climate change, deforestation, and the fate of the Amazon. Science 319:169–172CrossRefGoogle Scholar
  17. Marcu A (2016) Carbon market provisions in the Paris Agreement (Article 6). CEPS, Brussels. Special Report, n. 128.
  18. Moutinho P, Guerra R (2017) Programa REDD para early movers – REM: Abordagem de Estoque e Fluxo para a Repartição de Benefícios em Programas de REDD: Conceito e Prática na Implementação de REDD no Estado do Acre. Instituto de Pesquisa Ambiental da Amazonia – IPAM, BrasíliaGoogle Scholar
  19. Nepstad DC et al (2014) Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 344:1118–1123CrossRefGoogle Scholar
  20. Paiva et al (2013) Large-scale hydrologic and hydrodynamic modeling of the AmazonRiver basin. Water Resour Res 49:1226–1243CrossRefGoogle Scholar
  21. Paoli GD et al (2010) Biodiversity conservation in the REDD. Carbon Balance Manag 5(7):1–9Google Scholar
  22. Piris-Cabezas P et al (2016) Cost-effective emissions reductions beyond Brazil’s international target: estimation and valuation of Brazil’s potential climate asset, environmental defense fund Washington. Google Scholar
  23. SEEG (2019) Sistema de Estimativa de Emissões de Gases de Efeito Estufa, Brasília.
  24. Seroa da Motta R (2005) Custos e benefícios do desmatamento na Amazônia. Ciência & Ambiente 32:73–84Google Scholar
  25. Seymour F et al (2017) Why forests? Why now? The science, economics and politics of tropical forests and climate change. Center for Global Development, Washington.
  26. Silva et al (2005) The fate of the Amazonian areas of endemism. Conserv Biol 19(3):689–694CrossRefGoogle Scholar
  27. Strand et al (2018) Spatially explicit valuation of the Brazilian Amazon Forest’s ecosystem services. Nat Sustain 664(1):657–664CrossRefGoogle Scholar
  28. Strassburg BBN et al (2012) Impacts of incentives to reduce emissions from deforestation on global species extinctions. Nat Clim Chang 2(5):350–355CrossRefGoogle Scholar
  29. Sumila TCA et al (2017) Sources of water vapor to economically relevant regions in Amazonia and the effect of deforestation. J Hydrometeorol 18:1643–1655CrossRefGoogle Scholar
  30. ter Steege H et al (2015) Estimating the global conservation status of more than 15,000 Amazonian tree species. Sci Adv 20(10):1–10Google Scholar
  31. Trotignon R (2011) Combining cap-and-trade with offsets: lessons from the EU-ETS. Clim Pol 12(3):273–287CrossRefGoogle Scholar
  32. United Nations (2016) Paris Agreement. United Nations Treaty Collection. 8 July 2016. Archived from the original on 21 August 2016. Available at
  33. Wang-Helmreich H, Kreibich N (2019) The potential impacts of a domestic offset component in a carbon tax on mitigation of national emissions. Renew Sust Energ Rev 101(C):453–460CrossRefGoogle Scholar
  34. Watson R et al (2010) IPCC special report on land use, land use change and forestry, a special report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ronaldo Seroa da Motta
    • 1
    Email author
  • Pedro Moura Costa
    • 2
  • Mariano Cenamo
    • 3
  • Pedro Soares
    • 3
  • Virgílio Viana
    • 4
  • Victor Salviati
    • 4
  • Paula Bernasconi
    • 5
  • Alice Thuault
    • 5
  • Plinio Ribeiro
    • 6
  1. 1.State University of Rio de Janeiro (UERJ)Rio de JaneiroBrazil
  2. 2.Bolsa de Valores Ambientais do Rio de Janeiro (BVRio)Rio de JaneiroBrazil
  3. 3.Instituto de Conservação e Desenvolvimento Sustentável da Amazônia (Idesam)ManausBrazil
  4. 4.Fundação Amazonas Sustentável (FAS)ManausBrazil
  5. 5.Instituto Centro de Vida (ICV)CuiabáBrazil
  6. 6.Biofílica Investimentos Ambientais (Biofilica)Sao PauloBrazil

Personalised recommendations