Advertisement

GR(1)*: GR(1) Specifications Extended with Existential Guarantees

  • Gal Amram
  • Shahar MaozEmail author
  • Or Pistiner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11800)

Abstract

Reactive synthesis is an automated procedure to obtain a correct-by-construction reactive system from its temporal logic specification. GR(1) is an expressive assume-guarantee fragment of LTL that enables efficient synthesis and has been recently used in different contexts and application domains. A common form of providing the system’s requirements is through use cases, which are existential in nature. However, GR(1), as a fragment of LTL, is limited to universal properties.

In this paper we introduce GR(1)*, which extends GR(1) with existential guarantees. We show that GR(1)* is strictly more expressive than GR(1) as it enables the expression of guarantees that are inexpressible in LTL. We solve the realizability problem for GR(1)* and present a symbolic strategy construction algorithm for GR(1)* specifications. Importantly, in comparison to GR(1), GR(1)* remains efficient, and induces only a minor additional cost in terms of time complexity, proportional to the extended length of the formula.

Notes

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 638049, SYNTECH).

References

  1. 1.
    Alexander, I.F., Maiden, N.: Scenarios, Stories, Use Cases: Through the Systems Development Life-Cycle. 1st edn. Wiley Publishing (2004)Google Scholar
  2. 2.
    Alrajeh, D., Kramer, J., Russo, A., Uchitel, S.: Learning from vacuously satisfiable scenario-based specifications. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 377–393. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28872-2_26CrossRefGoogle Scholar
  3. 3.
    Alrajeh, D., Ray, O., Russo, A., Uchitel, S.: Using abduction and induction for operational requirements elaboration. J. Appl. Logic 7(3), 275–288 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Alur, R., Moarref, S., Topcu, U.: Counter-strategy guided refinement of GR(1) temporal logic specifications. In: Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA, 20–23 October 2013, pp. 26–33. IEEE (2013).  https://doi.org/10.1109/FMCAD.2013.6679387
  5. 5.
    Bloem, R., Ehlers, R., Könighofer, R.: Cooperative reactive synthesis. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364, pp. 394–410. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24953-7_29CrossRefGoogle Scholar
  6. 6.
    Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012).  https://doi.org/10.1016/j.jcss.2011.08.007
  7. 7.
    Bloem, R., Schewe, S., Khalimov, A.: CTL* synthesis via LTL synthesis. In: Proceedings Sixth Workshop on Synthesis, SYNT@CAV 2017, Heidelberg, Germany, 22 July 2017, pp. 4–22 (2017).  https://doi.org/10.4204/EPTCS.260.4
  8. 8.
    Browne, A., Clarke, E.M., Jha, S., Long, D.E., Marrero, W.R.: An improved algorithm for the evaluation of fixpoint expressions. Theor. Comput. Sci. 178(1–2), 237–255 (1997).  https://doi.org/10.1016/S0304-3975(96)00228-9MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. 35(8), 677–691 (1986).  https://doi.org/10.1109/TC.1986.1676819CrossRefzbMATHGoogle Scholar
  10. 10.
    Cavezza, D.G., Alrajeh, D.: Interpolation-based GR(1) assumptions refinement. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 281–297. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54577-5_16CrossRefGoogle Scholar
  11. 11.
    Cimatti, A., Roveri, M., Schuppan, V., Tchaltsev, A.: Diagnostic information for realizability. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 52–67. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78163-9_9CrossRefGoogle Scholar
  12. 12.
    Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982).  https://doi.org/10.1007/BFb0025774CrossRefGoogle Scholar
  13. 13.
    D’Ippolito, N., Braberman, V.A., Piterman, N., Uchitel, S.: Synthesizing nonanomalous event-based controllers for liveness goals. ACM Trans. Softw. Eng. Methodol. 22(1), 9 (2013).  https://doi.org/10.1145/2430536.2430543CrossRefGoogle Scholar
  14. 14.
    Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state verification. In: ICSE, pp. 411–420. ACM (1999)Google Scholar
  15. 15.
    Ehlers, R., Könighofer, R., Bloem, R.: Synthesizing cooperative reactive mission plans. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2015, Hamburg, Germany, 28 September - 2 October 2015, pp. 3478–3485. IEEE (2015).  https://doi.org/10.1109/IROS.2015.7353862
  16. 16.
    Emerson, E.A., Halpern, J.Y.: “sometimes” and “not never” revisited: on branching versus linear time temporal logic. J. ACM 33(1), 151–178 (1986).  https://doi.org/10.1145/4904.4999MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Filippidis, I., Dathathri, S., Livingston, S.C., Ozay, N., Murray, R.M.: Control design for hybrid systems with tulip: the temporal logic planning toolbox. In: 2016 IEEE Conference on Control Applications, CCA 2016, Buenos Aires, Argentina, 19–22 September 2016, pp. 1030–1041. IEEE (2016).  https://doi.org/10.1109/CCA.2016.7587949
  18. 18.
    Harel, D., Kugler, H.: Synthesizing state-based object systems from LSC specifications. Int. J. Found. Comput. Sci. 13(01), 5–51 (2002)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Jacobson, I.: Object-Oriented Software Engineering: A Use Case Driven Approach. Addison Wesley Longman Publishing Co. Inc, Redwood City (2004)Google Scholar
  20. 20.
    Kesten, Y., Piterman, N., Pnueli, A.: Bridging the gap between fair simulation and trace inclusion. Inf. Comput. 200(1), 35–61 (2005). http://www.sciencedirect.com/science/article/pii/S0890540105000234
  21. 21.
    Könighofer, R., Hofferek, G., Bloem, R.: Debugging formal specifications: a practical approach using model-based diagnosis and counterstrategies. STTT 15(5–6), 563–583 (2013).  https://doi.org/10.1007/s10009-011-0221-yCrossRefGoogle Scholar
  22. 22.
    Kozen, D.: Results on the propositional \(\mu \)-calculus. In: Proceedings of the 9th Colloquium on Automata, Languages and Programming, pp. 348–359. Springer, London (1982). http://dl.acm.org/citation.cfm?id=646236.682866
  23. 23.
    Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal-logic-based reactive mission and motion planning. IEEE Trans. Robot. 25(6), 1370–1381 (2009).  https://doi.org/10.1109/TRO.2009.2030225CrossRefGoogle Scholar
  24. 24.
    Kugler, H., Harel, D., Pnueli, A., Lu, Y., Bontemps, Y.: Temporal logic for scenario-based specifications. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 445–460. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-31980-1_29CrossRefzbMATHGoogle Scholar
  25. 25.
    Kupferman, O., Vardi, M.Y.: Synthesis with incomplete information. In: Barringer, H., Fisher, M., Gabbay, D., Gough, G. (eds.) Advances in Temporal Logic, vol. 16, pp. 109–127. Springer, Dordrecht (2000).  https://doi.org/10.1007/978-94-015-9586-5_6CrossRefGoogle Scholar
  26. 26.
    Majumdar, R., Piterman, N., Schmuck, A.: Environmentally-friendly GR(1) synthesis. CoRR abs/1902.05629 (2019). http://arxiv.org/abs/1902.05629
  27. 27.
    Maniatopoulos, S., Schillinger, P., Pong, V., Conner, D.C., Kress-Gazit, H.: Reactive high-level behavior synthesis for an atlas humanoid robot. In: Kragic, D., Bicchi, A., Luca, A.D. (eds.) 2016 IEEE International Conference on Robotics and Automation, ICRA 2016, Stockholm, Sweden, 16–21 May 2016, pp. 4192–4199. IEEE (2016).  https://doi.org/10.1109/ICRA.2016.7487613
  28. 28.
    Maoz, S., Ringert, J.O.: GR(1) synthesis for LTL specification patterns. In: ESEC/FSE, pp. 96–106. ACM (2015).  https://doi.org/10.1145/2786805.2786824
  29. 29.
    Maoz, S., Ringert, J.O.: On well-separation of GR(1) specifications. In: Zimmermann, T., Cleland-Huang, J., Su, Z. (eds.) Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, 13–18 November 2016, pp. 362–372. ACM (2016).  https://doi.org/10.1145/2950290.2950300
  30. 30.
    Maoz, S., Ringert, J.O.: Spectra: a specification language for reactive systems. CoRR abs/1904.06668 (2019). http://arxiv.org/abs/1904.06668
  31. 31.
    Maoz, S., Ringert, J.O., Shalom, R.: Symbolic repairs for GR(1) specifications. In: Mussbacher, G., Atlee, J.M., Bultan, T. (eds.) Proceedings of the 41st International Conference on Software Engineering, ICSE 2019, Montreal, QC, Canada, 25–31 May 2019, pp. 1016–1026. IEEE/ACM (2019). https://dl.acm.org/citation.cfm?id=3339632
  32. 32.
    Maoz, S., Sa’ar, Y.: AspectLTL: an aspect language for LTL specifications. In: AOSD, pp. 19–30. ACM (2011).  https://doi.org/10.1145/1960275.1960280
  33. 33.
    Maoz, S., Sa’ar, Y.: Assume-guarantee scenarios: semantics and synthesis. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) Model Driven Engineering Languages and Systems. MODELS 2012 LNCS, vol. 7590, pp. 335–351. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33666-9_22CrossRefGoogle Scholar
  34. 34.
    Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive (1) designs. In: Emerson, E.A., Namjoshi, K.S. (eds.) Verification, Model Checking, and Abstract Interpretation VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer, Heidelberg (2005).  https://doi.org/10.1007/11609773_24CrossRefGoogle Scholar
  35. 35.
    Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of Computer Science, Providence, Rhode Island, USA, 31 October – 1 November 1977, pp. 46–57. IEEE Computer Society (1977).  https://doi.org/10.1109/SFCS.1977.32
  36. 36.
    Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–190. ACM Press (1989)Google Scholar
  37. 37.
    Pohl, K.: Requirements Engineering: Fundamentals, Principles, and Techniques, 1st edn. Springer Publishing Company, Incorporated (2010)Google Scholar
  38. 38.
    Rosner, R.: Modular synthesis of reactive systems. Ph.D. thesis, Weizmann Institute of Science (1992)Google Scholar
  39. 39.
    Sibay, G., Uchitel, S., Braberman, V.: Existential live sequence charts revisited. In: Proceedings of the 30th international conference on Software engineering, pp. 41–50. ACM (2008)Google Scholar
  40. 40.
    Sibay, G.E., Braberman, V., Uchitel, S., Kramer, J.: Synthesizing modal transition systems from triggered scenarios. IEEE Trans. Softw. Eng. 39(7), 975–1001 (2013)CrossRefGoogle Scholar
  41. 41.
    Somenzi, F.: CUDD: CU Decision Diagram Package Release 3.0.0 (2015). http://vlsi.colorado.edu/~fabio/CUDD/cudd.pdf
  42. 42.
    Sutcliffe, A.G., Maiden, N.A., Minocha, S., Manuel, D.: Supporting scenario-based requirements engineering. IEEE Trans. Softw. Eng. 24(12), 1072–1088 (1998)CrossRefGoogle Scholar
  43. 43.
    Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math. 5(2), 285–309 (1955).  https://doi.org/10.2140/pjm.1955.5.285MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Uchitel, S., Brunet, G., Chechik, M.: Behaviour model synthesis from properties and scenarios. In: Proceedings of the 29th international conference on Software Engineering, pp. 34–43. IEEE Computer Society (2007)Google Scholar
  45. 45.
    Uchitel, S., Brunet, G., Chechik, M.: Synthesis of partial behavior models from properties and scenarios. IEEE Trans. Softw. Eng. 35(3), 384–406 (2009)CrossRefGoogle Scholar
  46. 46.
    Walker, A., Ryzhyk, L.: Predicate abstraction for reactive synthesis. In: Formal Methods in Computer-Aided Design, FMCAD 2014, Lausanne, Switzerland, 21–24 October 2014, pp. 219–226. IEEE (2014).  https://doi.org/10.1109/FMCAD.2014.6987617
  47. 47.
    Zachos, K., Maiden, N., Tosar, A.: Rich-media scenarios for discovering requirements. IEEE Softw. 22(5), 89–97 (2005)CrossRefGoogle Scholar
  48. 48.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Tel Aviv UniversityTel AvivIsrael

Personalised recommendations