Advertisement

Controlling Large Boolean Networks with Temporary and Permanent Perturbations

  • Cui Su
  • Soumya Paul
  • Jun PangEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11800)

Abstract

A salient objective of studying gene regulatory networks (GRNs) is to identify potential target genes whose perturbations would lead to effective treatment of diseases. In this paper, we develop two control methods for GRNs in the context of asynchronous Boolean networks. Our methods compute a minimal subset of nodes of a given Boolean network, such that temporary or permanent perturbations of these nodes drive the network from an initial state to a target steady state. The main advantages of our methods include: (1) temporary and permanent perturbations can be feasibly conducted with techniques for genetic modifications in biological experiments; and (2) the minimality of the identified control sets can reduce the cost of experiments to a great extent. We apply our methods to several real-life biological networks in silico to show their efficiency in terms of computation time and their efficacy with respect to the number of nodes to be perturbed.

Notes

Acknowledgements

The work was partially supported by the research project SEC-PBN funded by the University of Luxembourg and the ANR-FNR project AlgoReCell (INTER/ANR/15/11191283). We also want to thank Loïc Paulevé for discussions.

References

  1. 1.
    Takahashi, K.: Cellular reprogramming. Cold Spring Harb. Perspect. Biol. 6(2), a018606 (2014)CrossRefGoogle Scholar
  2. 2.
    Sol, A.D., Buckley, N.: Concise review: a population shift view of cellular reprogramming. Stem Cells 32(6), 1367–1372 (2014)CrossRefGoogle Scholar
  3. 3.
    Graf, T., Enver, T.: Forcing cells to change lineages. Nature 462(7273), 587–594 (2009)CrossRefGoogle Scholar
  4. 4.
    Srivastava, D., DeWitt, N.: In vivo cellular reprogramming: the next generation. Cell 166(6), 1386–1396 (2016)CrossRefGoogle Scholar
  5. 5.
    Wang, L.Z., et al.: A geometrical approach to control and controllability of nonlinear dynamical networks. Nat. Commun. 7, 11323 (2016)CrossRefGoogle Scholar
  6. 6.
    Zañudo, J.G.T., Albert, R.: Cell fate reprogramming by control of intracellular network dynamics. PLoS Comput. Biol. 11(4), e1004193 (2015)CrossRefGoogle Scholar
  7. 7.
    Kauffman, S.A.: Homeostasis and differentiation in random genetic control networks. Nature 224, 177–178 (1969)CrossRefGoogle Scholar
  8. 8.
    Liu, Y.Y., Slotine, J.J., Barabási, A.L.: Controllability of complex networks. Nature 473, 167–73 (2011)CrossRefGoogle Scholar
  9. 9.
    Gao, J., Liu, Y.Y., D’Souza, R.M., Barabási, A.L.: Target control of complex networks. Nat. Commun. 5, 5415 (2014)CrossRefGoogle Scholar
  10. 10.
    Czeizler, E., Gratie, C., Chiu, W.K., Kanhaiya, K., Petre, I.: Target controllability of linear networks. In: Bartocci, E., Lio, P., Paoletti, N. (eds.) CMSB 2016. LNCS, vol. 9859, pp. 67–81. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45177-0_5CrossRefGoogle Scholar
  11. 11.
    Bornholdt, S.: Less is more in modeling large genetic networks. Science 310(5747), 449–451 (2005)CrossRefGoogle Scholar
  12. 12.
    Mochizuki, A., Fiedler, B., Kurosawa, G., Saito, D.: Dynamics and control at feedback vertex sets. II: a faithful monitor to determine the diversity of molecular activities in regulatory networks. J. Theor. Biol. 335, 130–146 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Zañudo, J.G.T., Yang, G., Albert, R.: Structure-based control of complex networks with nonlinear dynamics. Proc. Natl. Acad. Sci. 114(28), 7234–7239 (2017)CrossRefGoogle Scholar
  14. 14.
    Kim, J., Park, S., Cho, K.: Discovery of a kernel for controlling biomolecular regulatory networks. Sci. Rep. 3, 2223 (2013)CrossRefGoogle Scholar
  15. 15.
    Zhao, Y., Kim, J., Filippone, M.: Aggregation algorithm towards large-scale Boolean network analysis. IEEE Trans. Autom. Control 58(8), 1976–1985 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Papin, J.A., Hunter, T., Palsson, B.O., Subramaniam, S.: Reconstruction of cellular signalling networks and analysis of their properties. Nat. Rev. Mol. Cell Biol. 6(2), 99 (2005)CrossRefGoogle Scholar
  17. 17.
    Cornelius, S.P., Kath, W.L., Motter, A.E.: Realistic control of network dynamics. Nat. Commun. 4, 1942 (2013)CrossRefGoogle Scholar
  18. 18.
    Germini, D., Tsfasman, T., Zakharova, V.V., Sjakste, N., Lipinski, M., Vassetzky, Y.: A comparison of techniques to evaluate the effectiveness of genome editing. Trends Biotechnol. 36(2), 147–159 (2018)CrossRefGoogle Scholar
  19. 19.
    Paul, S., Su, C., Pang, J., Mizera, A.: A decomposition-based approach towards the control of Boolean networks. In: Proceedings 9th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics, pp. 11–20. ACM Press (2018)Google Scholar
  20. 20.
    Krumsiek, J., Marr, C., Schroeder, T., Theis, F.J.: Hierarchical differentiation of myeloid progenitors is encoded in the transcription factor network. PLOS one 6(8), e22649 (2011)CrossRefGoogle Scholar
  21. 21.
    Müller, F., Schuppert, A.: Few inputs can reprogram biological networks. Nature 478(7369), E4 (2011)CrossRefGoogle Scholar
  22. 22.
    Takahashi, K., Yamanaka, S.: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4), 663–676 (2006)CrossRefGoogle Scholar
  23. 23.
    Mizera, A., Pang, J., Su, C., Yuan, Q.: ASSA-PBN: a toolbox for probabilistic Boolean networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 15(4), 1203–1216 (2018)CrossRefGoogle Scholar
  24. 24.
    Zhu, P., Han, J.: Asynchronous stochastic Boolean networks as gene network models. J. Comput. Biol. 21(10), 771–783 (2014)CrossRefGoogle Scholar
  25. 25.
    Paul, S., Su, C., Pang, J., Mizera, A.: An efficient approach towards the source-target control of Boolean networks. IEEE/ACM Trans. Comput. Biol. Bioinform. (2019)Google Scholar
  26. 26.
    Zhang, R., Lin, Y.: Deg 5.0, a database of essential genes in both prokaryotes and eukaryotes. Nucleic Acids Res. 37, D455–D458 (2008). (Database issue)CrossRefGoogle Scholar
  27. 27.
    Herrmann, F., Groß, A., Zhou, D., Kestler, H.A., Kühl, M.: A Boolean model of the cardiac gene regulatory network determining first and second heart field identity. PLOS one 7(10), 1–10 (2012)CrossRefGoogle Scholar
  28. 28.
    Sahin, O., et al.: Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance. BMC Syst. Biol. 3(1), 1 (2009)CrossRefGoogle Scholar
  29. 29.
    Cohen, D.P.A., Martignetti, L., Robine, S., Barillot, E., Zinovyev, A., Calzone, L.: Mathematical modelling of molecular pathways enabling tumour cell invasion and migration. PLoS Comput. Biol. 11(11), e1004571 (2015)CrossRefGoogle Scholar
  30. 30.
    Offermann, B., et al.: Boolean modeling reveals the necessity of transcriptional regulation for bistability in PC12 cell differentiation. Front. Genet. 7, 44 (2016)CrossRefGoogle Scholar
  31. 31.
    Collombet, S., et al.: Logical modeling of lymphoid and myeloid cell specification and transdifferentiation. Proc. Natl. Acad. Sci. 114(23), 5792–5799 (2017)CrossRefGoogle Scholar
  32. 32.
    Grieco, L., Calzone, L., Bernard-Pierrot, I., Radvanyi, F., Kahn-Perles, B., Thieffry, D.: Integrative modelling of the influence of MAPK network on cancer cell fate decision. PLoS Comput. Biol. 9(10), e1003286 (2013)CrossRefGoogle Scholar
  33. 33.
    Singh, A., Nascimento, J.M., Kowar, S., Busch, H., Boerries, M.: Boolean approach to signalling pathway modelling in HGF-induced keratinocyte migration. Bioinformatics 28(18), 495–501 (2012)CrossRefGoogle Scholar
  34. 34.
    Conroy, B.D., et al.: Design, assessment, and in vivo evaluation of a computational model illustrating the role of CAV1 in CD4+ T-lymphocytes. Front. Immunol. 5, 599 (2014)CrossRefGoogle Scholar
  35. 35.
    Mandon, H., Su, C., Haar, S., Pang, J., Paulevé, L.: Sequential reprogramming of Boolean networks made practical. In: Proceedings 17th International Conference on Computational Methods in Systems Biology. LNCS, Springer-Verlag (2019)Google Scholar
  36. 36.
    Shmulevich, I., Dougherty, E.R.: Probabilistic Boolean Networks: The Modeling and Control of Gene Regulatory Networks. SIAM Press, Philadelphia (2010)CrossRefGoogle Scholar
  37. 37.
    Trairatphisan, P., Mizera, A., Pang, J., Tantar, A.A., Schneider, J., Sauter, T.: Recent development and biomedical applications of probabilistic Boolean networks. Cell Commun. Signal. 11, 46 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Interdisciplinary Centre for Security, Reliability and TrustUniversity of LuxembourgEsch-sur-AlzetteLuxembourg
  2. 2.Faculty of Science, Technology and CommunicationUniversity of LuxembourgEsch-sur-AlzetteLuxembourg

Personalised recommendations