Advertisement

Learning Deterministic Variable Automata over Infinite Alphabets

  • Sarai SheinvaldEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11800)

Abstract

Automated reasoning about systems with infinite domains requires an extension of automata, and in particular, finite automata, to infinite alphabets. One such model is Variable Finite Automata (VFA). VFAs are finite automata whose alphabet is interpreted as variables that range over an infinite domain. On top of their simple and intuitive structure, VFAs have many appealing properties. One such property is a deterministic fragment (DVFA), which is closed under the Boolean operations, and whose containment and emptiness problems are decidable. These properties are rare amongst the many different models for automata over infinite alphabets. In this paper, we continue to explore the advantages of DVFAs, and show that they have a canonical form, which proves them to be a particularly robust model that is easy to reason about and use in practice. Building on these results, we construct an efficient learning algorithm for DVFAs, based on the \(\textsc {L}^*\) algorithm for regular languages.

References

  1. [AD18]
    Argyros, G., D’Antoni, L.: The learnability of symbolic automata. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 427–445. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-96145-3_23CrossRefGoogle Scholar
  2. [Ang87]
    Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)MathSciNetCrossRefGoogle Scholar
  3. [BHLM14]
    Bollig, B., Habermehl, P., Leucker, M., Monmege, B.: A robust class of data languages and an application to learning. Logical Methods Comput. Sci. 10, 11 (2014)MathSciNetCrossRefGoogle Scholar
  4. [BMS+06]
    Bojanczyk, M., Muscholl, A., Schwentick, T., Segoufin, L., David, C.: Two-variable logic on words with data. In: LICS, pp. 7–16. IEEE Computer Society (2006)Google Scholar
  5. [BMSS09]
    Bojańczyk, M., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on data trees and XML reasoning. J. ACM 56(3), 1–48 (2009) MathSciNetCrossRefGoogle Scholar
  6. [DD17]
    Drews, S., D’Antoni, L.: Learning symbolic automata. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 173–189. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54577-5_10CrossRefGoogle Scholar
  7. [FGS18]
    Frenkel, H., Grumberg, O., Sheinvald, S.: An automata-theoretic approach to model-checking systems and specifications over infinite data domains. J. Autom. Reasoning, 1–25 (2018).  https://doi.org/10.1007/s10817-018-9494-0
  8. [GKS10]
    Grumberg, O., Kupferman, O., Sheinvald, S.: Variable automata over infinite alphabets. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 561–572. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13089-2_47CrossRefzbMATHGoogle Scholar
  9. [KF94]
    Kaminski, M., Francez, N.: Finite-memory automata. Theoret. Comput. Sci. 134(2), 329–363 (1994) MathSciNetCrossRefGoogle Scholar
  10. [KZ08]
    Kaminski, M., Zeitlin, D.: Extending finite-memory automata with non-deterministic reassignment. In: Csuhaj-Varjú, E., Ézik, Z. (eds.) AFL, pp. 195–207 (2008)Google Scholar
  11. [NSV01]
    Neven, F., Schwentick, T., Vianu, V.: Towards regular languages over infinite alphabets. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 560–572. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44683-4_49CrossRefGoogle Scholar
  12. [PGB+08]
    Pasareanu, C.S., Giannakopoulou, D., Bobaru, M.G., Cobleigh, J.M., Barringer, H.: Learning to divide and conquer: applying the L* algorithm to automate assume-guarantee reasoning. Formal Methods Syst. Des. 32, 175–205 (2008)CrossRefGoogle Scholar
  13. [SF94]
    Shemesh, Y., Francez, N.: Finite-state unification automata and relational languages. Inf. Comput. 114, 192–213 (1994)MathSciNetCrossRefGoogle Scholar
  14. [Tan09]
    Tan, T.: Pebble automata for data languages: separation, decidability, and undecidability. Ph.D. thesis, Technion - Computer Science Department (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Software EngineeringBraude College of EngineeringKarmielIsrael

Personalised recommendations