Quantitative Verification of Numerical Stability for Kalman Filters

  • Alexandros EvangelidisEmail author
  • David Parker
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11800)


Kalman filters are widely used for estimating the state of a system based on noisy or inaccurate sensor readings, for example in the control and navigation of vehicles or robots. However, numerical instability may lead to divergence of the filter, and establishing robustness against such issues can be challenging. We propose novel formal verification techniques and software to perform a rigorous quantitative analysis of the effectiveness of Kalman filters. We present a general framework for modelling Kalman filter implementations operating on linear discrete-time stochastic systems, and techniques to systematically construct a Markov model of the filter’s operation using truncation and discretisation of the stochastic noise model. Numerical stability properties are then verified using probabilistic model checking. We evaluate the scalability and accuracy of our approach on two distinct probabilistic kinematic models and several implementations of Kalman filters.



This work has been partially supported by an EPSRC-funded Ph.D. studentship (award ref: 1576386) and the PRINCESS project (contract FA8750-16-C-0045) funded by the DARPA BRASS programme.


  1. 1.
    Math - Commons-Math: The Apache Commons Mathematics Library.
  2. 2.
    Anderson, B., Moore, J.: Optimal Filtering. Dover Books on Electrical Engineering. Dover Publications, New York (2012)Google Scholar
  3. 3.
    Bar-Shalom, Y.: Tracking and Data Association. Academic Press Professional Inc., San Diego (1987)zbMATHGoogle Scholar
  4. 4.
    Bar-Shalom, Y., Li, X.R.: Estimation with Applications to Tracking and Navigation. Wiley, New York (2001). Scholar
  5. 5.
    Battin, R.H.: Astronautical Guidance. McGraw-Hill, New York (1964). Electronic sciencesGoogle Scholar
  6. 6.
    Bertsekas, D., Tsitsiklis, J.: Introduction to Probability. Athena Scientific, Athena Scientific optimization and computation series (2008)Google Scholar
  7. 7.
    Bierman, G.J.: Factorization Methods for Discrete Sequential Estimation (1977)Google Scholar
  8. 8.
    Bucy, R.S., Joseph, P.D.: Processes with Applications to Guidance. Interscience Publishers, New York (1968)zbMATHGoogle Scholar
  9. 9.
    Carlson, N.A.: Fast triangular formulation of the square root filter. AIAA J. 11(9), 1259–1265 (1973). Scholar
  10. 10.
    Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification techniques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011). Scholar
  11. 11.
    Gibbs, B.P.: Advanced Kalman Filtering, Least Squares and Modeling: A Practical Handbook. Wiley, New York (2011). Scholar
  12. 12.
    Grewal, M.S., Andrews, A.P.: Kalman Filtering: Theory and Practice Using MATLAB, 4th edn. Wiley-IEEE Press, New York (2014)zbMATHGoogle Scholar
  13. 13.
    Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects Comput. 6(5), 512–535 (1994). Scholar
  14. 14.
    Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous univariate distributions. Wiley, New York (1994)zbMATHGoogle Scholar
  15. 15.
    Kailath, T.: Linear Systems. Prentice-Hall, Englewood Cliffs (1980)zbMATHGoogle Scholar
  16. 16.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. ASME J. Basic Eng. 82, 35–45 (1960)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kaminski, P., Bryson, A., Schmidt, S.: Discrete square root filtering: a survey of current techniques. IEEE Trans. Autom. Control 16(6), 727–736 (1971). Scholar
  18. 18.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). Scholar
  19. 19.
    Li, X.R., Jilkov, V.P.: Survey of maneuvering target tracking part. i. dynamic models. IEEE Trans. Aerosp. Electron. Syst. 39(4), 1333–1364 (2003). Scholar
  20. 20.
    Maybeck, P.S.: Stochastic Models, Estimation, and Control: Mathematics in Science and Engineering, vol. 1. Elsevier Science, Burlington (1982)zbMATHGoogle Scholar
  21. 21.
    Moulin, M., Gluhovsky, L., Bendersky, E.: Formal verification of maneuvering target tracking. In: AIAA Guidance, Navigation, and Control Conference and Exhibit (2003).
  22. 22.
    R. Gamboa, J. Cowles, J.V.B.: On the verification of synthesized kalman filters. In: 4th International Workshop on the ACL2 Theorem Prover and Its Applications (2003)Google Scholar
  23. 23.
    Roşu, G., Venkatesan, R.P., Whittle, J., Leuştean, L.: Certifying optimality of state estimation programs. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 301–314. Springer, Heidelberg (2003). Scholar
  24. 24.
    Simon, D.: Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. Wiley, New York (2006)CrossRefGoogle Scholar
  25. 25.
    Whittle, J., Schumann, J.: Automating the implementation of kalman filter algorithms. ACM Trans. Math. Softw. 30(4), 434–453 (2004). Scholar
  26. 26.
    Zarchan, P., Musoff, H.: Fundamentals of Kalman filtering : A Practical Approach, 4th edn. American Institute of Aeronautics and Astronautics, Reston (2015)CrossRefGoogle Scholar
  27. 27.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Computer ScienceUniversity of BirminghamBirminghamUK

Personalised recommendations