Advertisement

Role of Supermagnetic Nanoparticles in Alzheimer Disease

  • Shanmugam Rajeshkumar
  • Devaraj Ezhilarasan
  • Napaphol Puyathron
  • Thangavelu Lakshmi
Chapter

Abstract

Nanoparticles are the major development of nanotechnology and used in different biomedical fields. The nanoparticles are in different forms such as metal, polymer, and composites. In the metal and metal oxide, nanoparticles are used as anticancer, antimicrobial, and in many neurological diseases. The magnetic nanoparticles play an important role in the diagnosis, especially the imaging techniques (magnetic imaging, magnetic resonance imaging MRI scanning) and many sensors and environmental remediation techniques. Recently, the nanoparticles were used in the neural stem cell detection and neurodegenerative diseases, especially the Alzheimer’s disease. We have very limited numbers of research articles in the area of magnetic nanoparticles in neurodegenerative diseases. In this chapter, we have elaborated the synthesis of magnetic nanoparticles using different plant extracts and microorganisms used for magnetic nanoparticles synthesis and characterization of the nanoparticles using different microscopic and spectroscopic techniques and biomedical applications of magnetic nanoparticles. Finally, the magnetic nanoparticles in the Alzheimer’s disease have been explained with graphical representations.

Keywords

Magentic nanoparticles Iron oxide Neurodegenerative Green synthesis Biomedical Alzheimer’s disease 

References

  1. Abu-Dief A, Abdel-Fatah S (2018) Development and functionalization of magnetic nanoparticles as powerful and green catalysts for organic synthesis. Beni-Suef Univ J Basic Appl Sci 7(1):55–67CrossRefGoogle Scholar
  2. Aditya J, Rajeshkumar S, Roy A (2019) Anti inflammatory activity of Silver nanoparticles synthesised using Cumin oil. Res J Pharm Technol 12(6):2790–2793Google Scholar
  3. Al-Asfar A, Zaheer Z, Aazam E (2018) Eco-friendly green synthesis of Ag@Fe bimetallic nanoparticles: antioxidant, antimicrobial and photocatalytic degradation of bromothymol blue. J Photochem Photobiol B Biol 185:143–152CrossRefGoogle Scholar
  4. Arias L, Pessan J, Vieira A, Lima T, Delbem A, Monteiro D (2018) Iron oxide nanoparticles for biomedical applications: a perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics 7(2):46PubMedCentralCrossRefGoogle Scholar
  5. Asghar M, Zahir E, Shahid S, Khan M, Asghar M, Iqbal J, Walker G (2018) Iron, copper and silver nanoparticles: green synthesis using green and black tea leaves extracts and evaluation of antibacterial, antifungal and aflatoxin B1 adsorption activity. LWT-Food Sci Technol 90:98–107CrossRefGoogle Scholar
  6. Asoufi H, Al-Antary T, Awwad A (2018) Green route for synthesis hematite (Fe2O3) nanoparticles: toxicity effect on the green peach aphid, Myzus persicae (Sulzer). Environ Nanotechnol Monit Manag 9:107–111Google Scholar
  7. Bellova A, Bystrenova E, Koneracka M, Kopcansky P, Valle F, Tomasovicova N, Timko M, Bagelova J, Biscarini F, Gazova Z (2010) Effect of Fe(3)O(4) magnetic nanoparticles on lysozyme amyloid aggregation. Nanotechnology 21(6):065103PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bishnoi S, Kumar A, Selvaraj R (2018) Facile synthesis of magnetic iron oxide nanoparticles using inedible Cynometra ramiflora fruit extract waste and their photocatalytic degradation of methylene blue dye. Mater Res Bull 97:121–127CrossRefGoogle Scholar
  9. Chung TH, Hsu SC, Wu SH, Hsiao JK, Lin CP, Yao M, Huang DM (2018) Dextran-coated iron oxide nanoparticle-improved therapeutic effects of human mesenchymal stem cells in a mouse model of Parkinson’s disease. Nanoscale 10:2998–3007PubMedCrossRefPubMedCentralGoogle Scholar
  10. Collingwood JF, Telling ND (2016) Iron oxides in the human brain. In: Faivre D (ed) Iron oxides from nature to applications, 2nd edn. Wiley-VCH Verlag GmbH, Weinheim, pp 143–176CrossRefGoogle Scholar
  11. Dulińska-Litewka J, Łazarczyk A, Hałubiec P, Szafrański O, Karnas K, Karewicz A (2019) Superparamagnetic iron oxide nanoparticles-current and prospective medical applications. Materials (Basel) 12(4).  https://doi.org/10.3390/ma12040617PubMedCentralCrossRefGoogle Scholar
  12. Ebrahimpour S, Esmaeili A, Beheshti S (2018) Effect of quercetin-conjugated superparamagnetic iron oxide nanoparticles on diabetes-induced learning and memory impairment in rats. Int J Nanomedicine 13:6311–6324PubMedPubMedCentralCrossRefGoogle Scholar
  13. Eslamian M, Shekarriz M (2009) Recent advances in nanoparticle preparation by spray and microemulsion methods. Recent Pat Nanotechnol 3(2):99–115PubMedCrossRefPubMedCentralGoogle Scholar
  14. Ezhilarasan D (2018) Oxidative stress is bane in chronic liver diseases: clinical and experimental perspective. Arabian J Gastroenterol 19(2):56–64CrossRefGoogle Scholar
  15. Ezhilarasan D, Sokal E, Karthikeyan S, Najimi M (2014) Plant derived antioxidants and antifibrotic drugs: past, present and future. J Coast Life Med 2(9):738–745CrossRefGoogle Scholar
  16. Farshchi H, Azizi M, Jaafari M, Nemati S, Fotovat A (2018) Green synthesis of iron nanoparticles by Rosemary extract and cytotoxicity effect evaluation on cancer cell lines. Biocatal Agric Biotechnol 16:54–62CrossRefGoogle Scholar
  17. Freeman A, Platt S, Holmes S, Kent M, Robinson K, Howerth E, Eagleson J, Bouras A, Kaluzova M, Hadjipanayis CG (2018) Convection-enhanced delivery of cetuximab conjugated iron-oxide nanoparticles for treatment of spontaneous canine intracranial gliomas. J Neuro-Oncol 137(3):653–663CrossRefGoogle Scholar
  18. Fu T, Kong Q, Sheng H, Gao L (2016) Value of functionalized superparamagnetic iron oxide nanoparticles in the diagnosis and treatment of acute temporal lobe epilepsy on MRI. Neural Plast 2016:2412958PubMedPubMedCentralGoogle Scholar
  19. Gan L, Lu Z, Cao D, Chen Z (2018) Effects of cetyltrimethylammonium bromide on the morphology of green synthesized Fe3O4 nanoparticles used to remove phosphate. Mater Sci Eng C 82:41–45CrossRefGoogle Scholar
  20. Gautam A, Rawat S, Verma L, Singh J, Sikarwar S, Yadav B et al (2018) Green synthesis of iron nanoparticle from extract of waste tea: an application for phenol red removal from aqueous solution. Environ Nanotechnol Monit Manag 10:377–387Google Scholar
  21. Irshad R, Tahir K, Li B, Ahmad AR, Siddiqui A, Nazir S (2017) Antibacterial activity of biochemically capped iron oxide nanoparticles: a view towards green chemistry. J Photochem Photobiol B Biol 170:241–246CrossRefGoogle Scholar
  22. Ito A (2004) Magnetite nanoparticle-loaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia. Cancer Lett 212(2):167–175PubMedCrossRefPubMedCentralGoogle Scholar
  23. Ivashchenko O, Gapiński J, Peplińska B, Przysiecka Ł, Zalewski T, Nowaczyk G, Jarek M, Marcinkowska-Gapinska A, Jurga S (2017) Self-organizing silver and ultrasmall iron oxide nanoparticles prepared with ginger rhizome extract: characterization, biomedical potential and microstructure analysis of hydrocolloids. Mater Des 133:307–324CrossRefGoogle Scholar
  24. Izadiyan Z, Shameli K, Miyake M, Hara H, Mohamad S, Kalantari K, Taib SHM, Rasouli E (2018) Cytotoxicity assay of plant-mediated synthesized iron oxide nanoparticles using Juglans regia green husk extract. Arab J Chem. (in press)Google Scholar
  25. Jagathesan G, Rajiv P (2018) Biosynthesis and characterization of iron oxide nanoparticles using Eichhornia crassipes leaf extract and assessing their antibacterial activity. Biocatal Agric Biotechnol 13:90–94CrossRefGoogle Scholar
  26. Jain KK (2012) Nanobiotechnology-based strategies for crossing the bloodbrain barrier. Nanomedicine 7:1225–1233PubMedCrossRefPubMedCentralGoogle Scholar
  27. Kaluzova M, Bouras A, Machaidze R, Hadjipanayis C (2015) Targeted therapy of glioblastoma stem-like cells and tumor non-stem cells using cetuximab-conjugated iron-oxide nanoparticles. Oncotarget 6(11):8788–8806PubMedPubMedCentralCrossRefGoogle Scholar
  28. Katata-Seru L, Moremedi T, Aremu O, Bahadur I (2018) Green synthesis of iron nanoparticles using Moringa oleifera extracts and their applications: removal of nitrate from water and antibacterial activity against Escherichia coli. J Mol Liq 256:296–304CrossRefGoogle Scholar
  29. Kefeni K, Msagati T, Mamba B (2017) Ferrite nanoparticles: synthesis, characterisation and applications in electronic device. Mater Sci Eng B 215:37–55CrossRefGoogle Scholar
  30. Kharissova O, Dias H, Kharisov B, Pérez B, Pérez V (2013) The greener synthesis of nanoparticles. Trends Biotechnol 31(4):240–248PubMedCrossRefPubMedCentralGoogle Scholar
  31. Lakshmi PP, Krishna Mohan G, Venkateswara Rao K, Shanker K (2017) Neuroprotective effect of green synthesized iron oxide nanoparticles using aqueous extract of Convolvulus pluricaulis plant in the management of Alzheimer’s disease. Int J Pharm Phytochem Res 9(5):703–709Google Scholar
  32. Li J, Wang S, Shi X, Shen M (2017) Aqueous-phase synthesis of iron oxide nanoparticles and composites for cancer diagnosis and therapy. Adv Colloid Interf Sci 249:374–385CrossRefGoogle Scholar
  33. Malik M, Wani M, Hashim M (2012) Microemulsion method: a novel route to synthesize organic and inorganic nanomaterials. Arab J Chem 5(4):397–417CrossRefGoogle Scholar
  34. Martinkova P, Brtnicky M, Kynicky J, Pohanka M (2017) Iron oxide nanoparticles: innovative tool in cancer diagnosis and therapy. Adv Healthc Mater 7(5):1700932CrossRefGoogle Scholar
  35. Mehta R (2017) Synthesis of magnetic nanoparticles and their dispersions with special reference to applications in biomedicine and biotechnology. Mater Sci Eng C 79:901–916CrossRefGoogle Scholar
  36. Minchin RF, Martin DJ (2010) Nanoparticles for molecular imaging – an overview. Endocrinology 151:474–481PubMedCrossRefGoogle Scholar
  37. Nagaraja K, Roy A, Rajeshkumar S, Lakshmi T (2019) Antioxidant activity of cumin oil mediated silver nanoparticles. Pharm J 11(4):787–789Google Scholar
  38. Najafabadi RE, Kazemipour N, Esmaeili A, Beheshti S, Nazifi S (2018) Quercetin prevents body weight loss due to the using of superparamagnetic iron oxide nanoparticles in rat. Adv Biomed Res 7:8PubMedPubMedCentralCrossRefGoogle Scholar
  39. Naserzadeh P, Hafez AA, Abdorahim M, Abdollahifar MA, Shabani R, Peirovi H, Simchi A, Ashtari K (2018) Curcumin loading potentiates the neuroprotective efficacy of Fe3O4 magnetic nanoparticles in cerebellum cells of schizophrenic rats. Biomed Pharmacother 108:1244–1252PubMedCrossRefGoogle Scholar
  40. Nedyalkova M, Donkova B, Romanova J, Tzvetkov G, Madurga S, Simeonov V (2017) Iron oxide nanoparticles – in vivo/in vitro biomedical applications and in silico studies. Adv Colloid Interf Sci 249:192–212CrossRefGoogle Scholar
  41. Nikitin A, Fedorova M, Naumenko V, Shchetinin I, Abakumov M, Erofeev A, Gorelkin P, Meshkov G, Beloglazkina E, Ivanenkov Y, Klyacho N, Golovin Y, Savchenko A, Majouga A (2017) Synthesis, characterization and MRI application of magnetite water-soluble cubic nanoparticles. J Magn Mater 441:6–13CrossRefGoogle Scholar
  42. Nithya K, Sathish A, Senthil Kumar P, Ramachandran T (2018) Fast kinetics and high adsorption capacity of green extract capped superparamagnetic iron oxide nanoparticles for the adsorption of Ni(II) ions. J Ind Eng Chem 59:230–241CrossRefGoogle Scholar
  43. Pandey S, Mishra S (2011) Sol–gel derived organic–inorganic hybrid materials: synthesis, characterizations and applications. J Sol-Gel Sci Technol 59(1):73–94CrossRefGoogle Scholar
  44. Parveen S, Wani A, Shah M, Devi H, Bhat M, Koka J (2018) Preparation, characterization and antifungal activity of iron oxide nanoparticles. Microb Pathog 115:287–292PubMedCrossRefPubMedCentralGoogle Scholar
  45. Pranati T, Roy A, Rajeshkumar S, Lakshmi T (2019) Preparation of silver nanoparticles using nutmeg oleoresin and its antimicrobial activity against oral pathogens. Res J Pharm Technol 12(6):2799–2803CrossRefGoogle Scholar
  46. Rajendran N, Kumar S, Houreld N, Abrahamse H (2018) A review on nanoparticle based treatment for wound healing. J Drug Deliv Sci Technol 44:421–430CrossRefGoogle Scholar
  47. Rajeshkumar S, Menon S, Venkat Kumar S, Tambuwala MM, Bakshi HA, Mehta M, Satija S, Gupta G, Chellappan DK, Lakshmi T, Dua K (2019) Antibacterial and antioxidant potential of biosynthesized copper nanoparticles mediated through Cissus arnotiana plant extract. J Photochem Photobiol B Biol 197:111531CrossRefGoogle Scholar
  48. Rajiv P, Bavadharani B, Kumar M, Vanathi P (2017) Synthesis and characterization of biogenic iron oxide nanoparticles using green chemistry approach and evaluating their biological activities. Biocatal Agric Biotechnol 12:45–49CrossRefGoogle Scholar
  49. Ramimoghadam D, Bagheri S, Hamid S (2014) Progress in electrochemical synthesis of magnetic iron oxide nanoparticles. J Magn Magn Mater 368:207–229CrossRefGoogle Scholar
  50. Saeidienik F, Shahraki MR, Fanaei H, Badini F (2018) The effects of iron oxide nanoparticles administration on depression symptoms induced by LPS in male wistar rats. Basic Clin Neurosci 9(3):209–216PubMedPubMedCentralCrossRefGoogle Scholar
  51. Salazar-Alvarez G, Muhammed M, Zagorodni A (2006) Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution. Chem Eng Sci 61(14):4625–4633CrossRefGoogle Scholar
  52. Saleh N, Chambers B, Aich N, Plazas-Tuttle J, Phung-Ngoc H, Kirisits M (2015) Mechanistic lessons learned from studies of planktonic bacteria with metallic nanomaterials: implications for interactions between nanomaterials and biofilm bacteria. Front Microbiol 17(6):677Google Scholar
  53. Saratale R, Karuppusamy I, Saratale G, Pugazhendhi A, Kumar G, Park Y, Godakhe GS, Bharagava RN, Banu RJ, Shin HS (2018) A comprehensive review on green nanomaterials using biological systems: recent perception and their future applications. Colloids Surf B: Biointerfaces 70:20–35CrossRefGoogle Scholar
  54. Sathya K, Saravanathamizhan R, Baskar G (2017) Ultrasound assisted phytosynthesis of iron oxide nanoparticle. Ultrason Sonochem 39:446–451PubMedCrossRefPubMedCentralGoogle Scholar
  55. Shamaa AA, Roy A, Rajeshkumar S, Thangavelu L (2019) Synthesis of white pepper oleoresin mediated silver nanoparticles and its antioxidant effect. Biomedicine 31(1):165–169Google Scholar
  56. Sherwood J, Xu Y, Lovas K, Qin Y, Bao Y (2017) Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities. J Magn Magn Mater 427:220–224CrossRefGoogle Scholar
  57. Slavin Y, Asnis J, Häfeli U, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15:65CrossRefGoogle Scholar
  58. Tartaj P, Morales M, Veintemillas-Verdaguer S, Gonz lez-Carre OT, Serna C (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36(13):R182–R197CrossRefGoogle Scholar
  59. Toraya-Brown S, Sheen M, Zhang P, Chen L, Baird J, Demidenko E, Turk MJ, Hoopes PJ, Conejo-Garcia JR, Fiering S (2014) Local hyperthermia treatment of tumors induces CD8+ T cell-mediated resistance against distal and secondary tumors. Nanomedicine 10(6):1273–1285PubMedPubMedCentralCrossRefGoogle Scholar
  60. Umarao P, Bose S, Bhattacharyya S, Kumar A, Jain S (2016) Neuroprotective potential of superparamagnetic iron oxide nanoparticles along with exposure to electromagnetic field in 6-OHDA rat model of Parkinson’s disease. J Nanosci Nanotechnol 16(1):261–269PubMedCrossRefPubMedCentralGoogle Scholar
  61. Vinzant N, Scholl JL, Wu CM, Kindle T, Koodali R, Forster GL (2017) Iron oxide nanoparticle delivery of peptides to the brain: reversal of anxiety during drug withdrawal. Front Neurosci 11:608PubMedPubMedCentralCrossRefGoogle Scholar
  62. Wang T, Lin J, Chen Z, Megharaj M, Naidu R (2014) Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. J Clean Prod 83:413–419CrossRefGoogle Scholar
  63. Warren E, Payne C (2015) Cellular binding of nanoparticles disrupts the membrane potential. RSC Adv 5(18):13660–13666PubMedPubMedCentralCrossRefGoogle Scholar
  64. Wei Y, Fang Z, Zheng L, Tan L, Tsang E (2016) Green synthesis of Fe nanoparticles using Citrus maxima peels aqueous extracts. Mater Lett 185:384–386CrossRefGoogle Scholar
  65. Wei Y, Fang Z, Zheng L, Tsang E (2017) Biosynthesized iron nanoparticles in aqueous extracts of Eichhornia crassipes and its mechanism in the hexavalent chromium removal. Appl Surf Sci 399:322–329CrossRefGoogle Scholar
  66. Wilczewska A, Niemirowicz K, Markiewicz K, Car H (2012) Nanoparticles as drug delivery systems. Pharmacol Rep 64(5):1020–1037PubMedCrossRefPubMedCentralGoogle Scholar
  67. Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3(11):397–415PubMedPubMedCentralCrossRefGoogle Scholar
  68. Yarjanli Z, Ghaedi K, Esmaeili A, Rahgozar S, Zarrabi A (2017) Iron oxide nanoparticles may damage to the neural tissue through iron accumulation, oxidative stress, and protein aggregation. BMC Neurosci 18(1):51PubMedPubMedCentralCrossRefGoogle Scholar
  69. Yu N, Cai T, Sun Y, Jiang C, Xiong H, Li Y, Peng H (2018) A novel antibacterial agent based on AgNPs and Fe3O4 loaded chitin microspheres with peroxidase-like activity for synergistic antibacterial activity and wound-healing. Int J Pharm 552(1–2):277–287PubMedCrossRefPubMedCentralGoogle Scholar
  70. Zaloga J, Feoktystov A, Garamus V, Karawacka W, Ioffe A, Brückel T, Tietze R, Alexiou C, Iyer S (2018) Studies on the adsorption and desorption of mitoxantrone to lauric acid/albumin coated iron oxide nanoparticles. Colloids Surf B: Biointerfaces 161:18–26PubMedCrossRefPubMedCentralGoogle Scholar
  71. Zhang Z, Xie J, Yu J, Lu Z, Liu Y (2017) A novel colorimetric immunoassay strategy using iron(iii) oxide magnetic nanoparticles as a label for signal generation and amplification. J Mater Chem B 5(7):1454–1460CrossRefGoogle Scholar
  72. Zhu F, Ma S, Liu T, Deng X (2018) Green synthesis of nano zero-valent iron/Cu by green tea to remove hexavalent chromium from groundwater. J Clean Prod 174:184–190CrossRefGoogle Scholar
  73. Zverova M (2019) Clinical aspects of Alzheimer’s disease. Clin Biochem. (in press)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Shanmugam Rajeshkumar
    • 1
  • Devaraj Ezhilarasan
    • 1
  • Napaphol Puyathron
    • 1
    • 2
  • Thangavelu Lakshmi
    • 1
  1. 1.Department of PharmacologySaveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS)ChennaiIndia
  2. 2.Faculty of PharmacySilpakorn UniversityNakhon PathomThailand

Personalised recommendations