Advertisement

Nanobiotechnology in Neurodegenerative Diseases

  • Josef Jampílek
  • Katarína Kráľová
  • Petr Novák
  • Michal Novák
Chapter

Abstract

“Neurodegenerative disease” is a term for a variety of disorders that primarily affect neurons in the human brain and spinal cord. These diseases are presently incurable and result in progressive degeneration or death of nerve cells, resulting in impaired movement (ataxia, Parkinsonism, paresis) or mental functions (dementia). The most common neurodegenerative diseases include Parkinson’s disease and other parkinsonian syndromes, Alzheimer’s disease and other non-Alzheimer’s dementias, Friedreich’s disease and other spinocerebellar atrophy, amyotrophic lateral sclerosis, and other diseases manifesting symptoms such as restriction of free movement, tremor, chorea, dystonia, myoclonus, other abnormal movements, dementia, and other cognitive disorders. Neurodegenerative diseases are highly prevalent and are among the most serious diseases in terms of health and socioeconomic impact. These diseases are not limited to older age groups, but affect also children and adults of working age. The current therapies cannot cure the diseases; they only ameliorate or relieve symptoms. All employed drugs have their targeted site of action in the central nervous system; thus, overcoming the blood–brain barrier is a necessity. Nanotechnology provides a new dimension and new properties to all materials and, in particular, allows central nervous system targeting of nanoscale formulations with increased brain permeation, and it is, thus, widely used for the production of a new generation of pharmaceuticals and theranostics with improved drug bioavailability, reduced undesirable side effects, minimized nonspecific uptake, and specific targeting to certain target cells. This chapter presents a comprehensive overview of recent findings in the field of investigation and application of nanoformulations tested/used for the alleviation or treatment of Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, amyotrophic lateral sclerosis, Huntington’s disease, and Wilson’s disease as well as nanosensors applied for diagnostics or a treatment monitoring of neurodegenerative diseases.

Keywords

Nanoparticles Nanoformulations Central nervous system Neurodegeneration Targeted delivery Pharmaceuticals Nanosensors Theranostics 

Notes

Acknowledgements

This study was supported by the Slovak Research and Development Agency (project APVV-14-0547) and by the Ministry of Education of the Czech Republic (LO1305).

References

  1. Aalinkeel R, Kutscher HL, Singh A, Cwiklinski K, Khechen N, Schwartz SA, Prasad PN, Mahajan SD (2018) Neuroprotective effects of a biodegradable poly(lactic-co-glycolic acid)-ginsenoside Rg3 nanoformulation: a potential nanotherapy for Alzheimer's disease? J Drug Target 26(2):182–193PubMedCrossRefGoogle Scholar
  2. Aghili Z, Nasirizadeh N, Divsalar A, Shoeibi S, Yaghmaei P (2018) A highly sensitive miR-195 nanobiosensor for early detection of Parkinson's disease. Artificial Cells, Nanomedicine, and Biotechnology 46(Supl 1):S32–S40CrossRefGoogle Scholar
  3. Agrawal M, Saraf S, Saraf S, Antimisiaris SG, Chougule MB, Shoyele SA, Alexander A (2018) Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J Control Release 281: 139–177PubMedCrossRefGoogle Scholar
  4. Ahmad MZ, Ahmad J, Amin S, Rahman M, Anwar M, Mallick N, Ahmad FJ, Rahman Z, Kamal MA, Akhter S (2014) Role of nanomedicines in delivery of anti-acetylcholinesterase compounds to the brain in Alzheimer's disease. CNS Neurol Disord Drug Targets 13(8):1315–1324PubMedCrossRefGoogle Scholar
  5. Akbar M, Essa M, Daradkeh G, Abdelmegeed MA, Choi Y, Mahmood L, Songa BJ (2016) Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress. Brain Res 1637:34–55PubMedPubMedCentralCrossRefGoogle Scholar
  6. Akhter S, Jain GK, Ahmad FJ, Khar RK, Jain N, Khan ZI, Talegaonkar S (2008) Investigation of nanoemulsion system for transdermal delivery of domperidone: ex-vivo and in vivo studies. Curr Nanosci 4(4):381–390CrossRefGoogle Scholar
  7. Alawdi SH, El-Denshary ES, Safar MM, Eidi H, David MO, Abdel-Wahhab MA (2017) Neuroprotective effect of nanodiamond in Alzheimer's disease rat model: a pivotal role for modulating NF-κB and STAT3 signaling. Mol Neurobiol 54(3):1906–1918PubMedCrossRefGoogle Scholar
  8. Al-Dhubiab BE (2013) Formulation and in vitro evaluation of gelatin nanospheres for the oral delivery of selegiline. Curr Nanosci 9(1):21–25Google Scholar
  9. Ali SS, Hardt JI, Dugan LL (2008) SOD activity of carboxyfullerenes predicts their neuroprotective efficacy: a structure-activity study. Nanomedicine 4: 283–294CrossRefGoogle Scholar
  10. Ali T, Kim MJ, Rehman SU, Ahmad A, Kim MO (2017) Anthocyanin-loaded PEG-gold nanoparticles enhanced the neuroprotection of anthocyanins in an Aβ1-42 mouse model of Alzheimer's disease. Mol Neurobiol 54(8):6490–6506PubMedCrossRefGoogle Scholar
  11. Aliakbari F, Mohammad-Beigi H, Rezaei-Ghaleh N, Becker S, Esmatabad D, Seyedi HAE, Bardania H, Marvian AT, Collingwood JF, Christiansen G, Zweckstetter M, Otzen DE, Mordhedi D (2018) The potential of zwitterionic nanoliposomes against neurotoxic alpha-synuclein aggregates in Parkinson's disease. Nanoscale 10(19):9174–9185PubMedCrossRefGoogle Scholar
  12. Aliev G, Ashraf GM, Tarasov VV, Chubarev VN, Leszek J, Gasiorowski K, Makhmutova A, Baeesa SS, Avila-Rodriguez M, Ustyugov AA, Bachurin SO (2019) Alzheimer's disease - future therapy based on dendrimers. Curr Neuropharmacol 17(3):288–294PubMedPubMedCentralCrossRefGoogle Scholar
  13. Aly AEE, Harmon BT, Padegimas L, Sesenoglu-Laird O, Cooper MJ, Waszczak BL (2019) Intranasal delivery of pGDNF DNA nanoparticles provides neuroprotection in the rat 6-hydroxydopamine model of Parkinson's disease. Mol Neurobiol 56(1):688–701PubMedCrossRefGoogle Scholar
  14. Alzheimer's Disease International (2015) World Alzheimer Report: The Global Impact of Dementia. https://www.alz.co.uk/research/WorldAlzheimerReport2015.pdf
  15. Ambhore NS, Satyanarayana Raju KR, Mulukutla S, Yamjala K, Mohire S, Satyanarayana Reddy Karri VV, Gupta S, Murthy V, Elango K (2017) Brain targeting of 1,9-pyrazoloanthrone an c-Jun-N-terminal kinase inhibitor using liposomes for effective management of Parkinson's disease. Iran J Pharm Res 16(4):1463–1478PubMedPubMedCentralGoogle Scholar
  16. Andrade S, Ramalho MJ, Pereira MD, Loureiro JA (2018) Resveratrol brain delivery for neurological disorders prevention and treatment. Front Pharmacol 9:1261PubMedPubMedCentralCrossRefGoogle Scholar
  17. Andre EM, Passirani C, Seijo B, Sanchez A, Montero-Menei CN (2016) Nano and microcarriers to improve stem cell behaviour for neuroregenerative medicine strategies: application to Huntington's disease. Biomaterials 83:347–362PubMedCrossRefGoogle Scholar
  18. Ansari M, Habibi-Rezaei M, Salahshour-Kordestani S, Ferdousi M, Movahedi AAM (2016) An investigation on the effect of β-CD modified Fe3O4 magnetic nanoparticles on aggregation of amyloid-β peptide (25-35). Mater Technol 31(6):315–321CrossRefGoogle Scholar
  19. Antosova A, Bednarikova Z, Koneracka M, Antal I, Zavisova V, Kubovcikova M, Wu JW, Wang SSS, Gazova Z (2019) Destroying activity of glycine coated magnetic nanoparticles on lysozyme, α-lactalbumin, insulin and α-crystallin amyloid fibrils. J Magn Mater 471:169–176CrossRefGoogle Scholar
  20. Aoyagi A, Condello C, Stohr J, Yue W, Rivera BM, Lee JC, Woerman AL, Halliday G, van Duinen S, Ingelsson M, Lannfelt L, Graff C, Bird TD, Keene CD, Seeley WW, DeGrado WF, and Prusiner SB (2019) Aβ and tau prion-like activities decline with longevity in the Alzheimer’s disease human brain. Sci Transl Med 11(490):8462 PubMedCrossRefGoogle Scholar
  21. Armstrong MJ, Litvan I, Lang AE, Bak TH, Bhatia KP, Borroni B, Boxer AL, Dickson DW, Grossman M, Hallett M, Josephs KA, Kertesz A, Lee SE, Miller BL, Reich SG, Riley DE, Tolosa E, Troster AI, Vidailhet M, Weiner WJ (2013) Criteria for the diagnosis of corticobasal degeneration. Neurology 80:496–503PubMedPubMedCentralCrossRefGoogle Scholar
  22. Arumugam K, Subramanian GS, Mallayasamy SR, Averineni RK, Reddy MS, Udupa N (2008) A study of rivastigmine liposomes for delivery into the brain through intranasal route. Acta Pharm 58(3):287–297PubMedCrossRefGoogle Scholar
  23. Aso E, Martinsson I, Appelhans D, Effenberg C, Benseny-Cases N, Cladera J, Gouras G, Ferrer I, Klementieva O (2019) Poly(propylene imine) dendrimers with histidine-maltose shell as novel type of nanoparticles for synapse and memory protection. Nanomedicine 17:198–209PubMedCrossRefGoogle Scholar
  24. Atri A, Molinuevo JL, Lemming O, Wirth Y, Pulte I, Wilkinson D (2013) Memantine in patients with Alzheimer's disease receiving donepezil: new analyses of efficacy and safety for combination therapy. Alzheimers Res Ther 5:6PubMedPubMedCentralCrossRefGoogle Scholar
  25. Attems J, Jellinger KA (2014) The overlap between vascular disease and Alzheimer's disease – lessons from pathology. BMC Med 12:206PubMedPubMedCentralCrossRefGoogle Scholar
  26. Avachat AM, Oswal YM, Gujar KN, Shah RD (2014) Preparation and characterization of rivastigmine loaded human serum albumin (HSA) nanoparticles. Curr Drug Deliv 11(3):359–370PubMedCrossRefGoogle Scholar
  27. Azeem A, Ahmad FJ, Khar RK, Talegaonkar S (2009) Nanocarrier for the transdermal delivery of an antiparkinsonian drug. AAPS Pharm Sci Tech 10(4):1093–1103CrossRefGoogle Scholar
  28. Azeem A, Talegaonkar S, Negi LM, Ahmad FJ, Khar RK, Iqbal Z (2012) Oil based nanocarrier system for transdermal delivery of ropinirole: a mechanistic, pharmacokinetic and biochemical investigation. Int J Pharm 422(1–2):436–444PubMedCrossRefGoogle Scholar
  29. Aziz A, Asif M, Azeem M, Ashraf G, Wang ZY, Xiao F, Liu HF (2019) Self-stacking of exfoliated charged nanosheets of LDHs and graphene as biosensor with real-time tracking of dopamine from live cells. Anal Chim Acta 1047:197–207PubMedCrossRefGoogle Scholar
  30. Bajic V, Milovanovic ES, Spremo-Potparevic B, Zivkovic L, Milicevic Z, Stanimirovic J, Bogdanovic N, Isenovic ER (2016) Treatment of Alzheimer's disease: classical therapeutic approach. Curr Pharm Anal 12(2):82–90CrossRefGoogle Scholar
  31. Barnabas W (2019) Drug targeting strategies into the brain for treating neurological diseases. J Neurosci Methods 311:133–146PubMedCrossRefGoogle Scholar
  32. Basso AS, Frenkel D, Quintana FJ, Costa-Pinto FA, Petrovic-Stojkovic S, Puckett L, Monsonego A, Bar-Shir A, Engel Y, Gozin M, Weiner HL (2008) Reversal of axonal loss and disability in a mouse model of progressive multiple sclerosis. J Clin Investig 118:1532–1543PubMedCrossRefGoogle Scholar
  33. Baumgart M, Snyder HM, Carrillo MC, Fazio S, Kim H, Johns H (2015) Summary of the evidence on modifiable risk factors for cognitive decline and dementia: a population-based perspective. Alzheimers Dement 11:718–726PubMedCrossRefGoogle Scholar
  34. Baysal I, Yabanoglu-Ciftci S, Tunc-Sarisozen Y, Ulubayram K, Ucar G (2013) Interaction of selegiline-loaded PLGA-b-PEG nanoparticles with β-amyloid fibrils. J Neural Transm 120(6):903–910PubMedCrossRefGoogle Scholar
  35. Begum AN, Aguilar JS, Elias L, Hong YL (2016) Silver nanoparticles exhibit coating and dose-dependent neurotoxicity in glutamatergic neurons derived from human embryonic stem cells. Neurotoxicology 57:45–53PubMedCrossRefGoogle Scholar
  36. Bello M, Junior AM, Vieira BA, Dias LRS, de Sousa VP, Castro HC, Rodrigues CR, Cabral LM (2015) Sodium montmorillonite/amine-containing drugs complexes: new insights on intercalated drugs arrangement into layered carrier material. PLoS One 10(3):e0121110PubMedPubMedCentralCrossRefGoogle Scholar
  37. Bernardi A, Frozza RL, Meneghetti A, Hoppe JB, Battastini AMO, Pohlmann AR, Guterres SS, Salbego CG (2012) Indomethacin-loaded lipid-core nanocapsules reduce the damage triggered by Aβ1-42 in Alzheimer's disease models. Int J Nanomedicine 7:4927–4942PubMedPubMedCentralCrossRefGoogle Scholar
  38. Berry RW, Abraha A, Lagalwar S, LaPointe N, Gamblin TC, Cryns VL, Binder LI (2003) Inhibition of tau polymerization by its carboxy-terminal caspase cleavage fragment. Biochemistry 42:8325–8331PubMedCrossRefGoogle Scholar
  39. Bhak G, Lee S, Kim TH, Lee JH, Yang JE, Joo K, Lee J, Char K, Paik SR (2018) Morphological evaluation of meta-stable oligomers of α-synuclein with small-angle neutron scattering. Sci Rep 8:14295PubMedPubMedCentralCrossRefGoogle Scholar
  40. Bhatt R, Singh D, Prakash A, Mishra N (2015) Development, characterization and nasal delivery of rosmarinic acid-loaded solid lipid nanoparticles for the effective management of Huntington's disease. Drug Deliv 22(7):931–939PubMedCrossRefGoogle Scholar
  41. Bhatt PC, Pathak S, Kumar V, Panda BP (2018) Attenuation of neurobehavioral and neurochemical abnormalities in animal model of cognitive deficits of Alzheimer's disease by fermented soybean nanonutraceutical. Inflammopharmacology 26(1):105–118PubMedCrossRefGoogle Scholar
  42. Bhavna MS, Ali M, Ali R, Bhatnagar A, Baboota S, Ali J (2014a) Donepezil nanosuspension intended for nose to brain targeting: in vitro and in vivo safety evaluation. Int J Biol Macromol 67:418–425PubMedCrossRefGoogle Scholar
  43. Bhavna MS, Ali M, Bhatnagar A, Baboota S, Sahni JK, Ali J (2014b) Design, development, optimization and characterization of donepezil loaded chitosan nanoparticles for brain targeting to treat Alzheimer's disease. Sci Adv Mater 6(4):720–735CrossRefGoogle Scholar
  44. Bhavna MS, Ali M, Baboota S, Sahni JK, Bhatnagar A, Ali J (2014c) Preparation, characterization, in vivo biodistribution and pharmacokinetic studies of donepezil-loaded PLGA nanoparticles for brain targeting. Drug Dev Ind Pharm 40(2):278–287CrossRefGoogle Scholar
  45. Binder LI, Guillozet-Bongaarts AL, Garcia-Sierra F, Berry RW (2005) Tau, tangles, and Alzheimer's disease. Biochim Biophys Acta 1739:216–223PubMedCrossRefGoogle Scholar
  46. Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer's disease. Lancet 368:387–403PubMedCrossRefGoogle Scholar
  47. Bondi ML, Craparo EF, Giammona G, Drago F (2010) Brain-targeted solid lipid nanoparticles containing riluzole: preparation, characterization and biodistribution. Nanomedicine 5:25–32PubMedCrossRefGoogle Scholar
  48. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259PubMedPubMedCentralCrossRefGoogle Scholar
  49. Braak H, Del Tredici K (2017) Neuropathological staging of brain pathology in sporadic Parkinson's disease: separating the wheat from the chaff. J Parkinsons Dis 7:S71–S85PubMedPubMedCentralCrossRefGoogle Scholar
  50. Brahmkhatri VP, Sharma N, Sunanda P, D'Souza A, Raghothama S, Atreya HS (2018) Curcumin nanoconjugate inhibits aggregation of N-terminal region (Aβ-16) of an amyloid beta peptide. New J Chem 42(24):19881–19892CrossRefGoogle Scholar
  51. Brundin P, Li JY, Holton JL, Lindvall O, Revesz T (2008) Research in motion: the enigma of Parkinson's disease pathology spread. Nat Rev Neurosci 9:741–745PubMedCrossRefGoogle Scholar
  52. Brundin P, Melki R, Kopito R (2010) Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol 11:301–307PubMedPubMedCentralCrossRefGoogle Scholar
  53. Burkhart A, Azizi M, Thomsen MS, Thomsen LB, Moos T (2014) Accessing targeted nanoparticles to the brain: the vascular route. Curr Med Chem 21(36):4092–4099PubMedCrossRefGoogle Scholar
  54. Cacciatore I, Ciulla M, Fornasari E, Marinelli L, Di Stefano A (2016) Solid lipid nanoparticles as a drug delivery system for the treatment of neurodegenerative diseases. Expert Opin Drug Deliv 13(8):1121–1131PubMedCrossRefGoogle Scholar
  55. Cannava C, Stancanelli R, Marabeti MR, Venuti V, Cascio C, Guarneri P, Bongiorno C, Sortino G, Majolino D, Mazzaglia A, Tommasini S, Ventura CA (2016) Nanospheres based on PLGA/amphiphilic cyclodextrin assemblies as potential enhancers of methylene blue neuroprotective effect. RSC Adv 6(20):16720–16729CrossRefGoogle Scholar
  56. Cao XB, Hou DZ, Wang L, Li S, Sun SG, Ping QN, Xu Y (2016) Effects and molecular mechanism of chitosan-coated levodopa nanoliposomes on behavior of dyskinesia rats. Biol Res 49:32PubMedPubMedCentralCrossRefGoogle Scholar
  57. Carradori D, Balducci C, Re F, Brambilla D, Le Droumaguet B, Flores O, Gaudin A, Mura S, Forloni G, Ordonez-Gutierrez L, Wandosell F, Masserini M, Couvreur P, Nicolas J, Andrieux K (2018) Antibody-functionalized polymer nanoparticle leading to memory recovery in Alzheimer's disease-like transgenic mouse model. Nanomedicine 14(2):609–618PubMedCrossRefGoogle Scholar
  58. Ceccon A, Tugarinov V, Clore GM (2019) TiO2 nanoparticles catalyze oxidation of huntingtin exon 1-derived peptides impeding aggregation: a quantitative NMR study of binding and kinetics. J Am Chem Soc 141(1):94–97PubMedCrossRefGoogle Scholar
  59. Chen ZL, Huang M, Wang XR, Fu J, Han M, Shen YQ, Xia Z, Gao JQ (2016) Transferrin-modified liposome promotes α-mangostin to penetrate the blood-brain barrier. Nanomedicine 12(2):421–430PubMedCrossRefGoogle Scholar
  60. Chen LY, Watson C, Morsch M, Cole NJ, Chung RS, Saunders DN, Yerbury JJ, Vine KL (2017) Improving the delivery of SOD1 antisense oligonucleotides to motor neurons using calcium phosphate-lipid nanoparticles. Front Neurosci 11:476PubMedPubMedCentralCrossRefGoogle Scholar
  61. Chieh JJ, Wei WC, Liao SH, Chen HH, Lee YF, Lin FC, Chiang MH, Chiu MJ, Horng HE, Yang SY (2018) Eight-channel AC magnetosusceptometer of magnetic nanoparticles for high-throughput and ultra-high-sensitivity immunoassay. Sensors 18(4):1043CrossRefGoogle Scholar
  62. Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B (2015) Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci 9:124PubMedPubMedCentralCrossRefGoogle Scholar
  63. Chiu MJ, Chen YF, Chen TF, Yang SY, Yang FPG, Tseng TW, Chieh JJ, Chen JCR, Tzen KY, Hua MS, Horng HE (2014) Plasma tau as a window to the brain negative associations with brain volume and memory function in mild cognitive impairment and early Alzheimer's disease. Hum Brain Mapp 35(7):3132–3142PubMedCrossRefGoogle Scholar
  64. Choi I, Lee E, Lee LP (2013) Current nano/biotechnological approaches in amyotrophic lateral sclerosis. Biomed Eng Lett 3(4):209–222CrossRefGoogle Scholar
  65. Chung TH, Hsu SC, Wu SH, Hsiao JK, Lin CP, Yao M, Huang DM (2018) Dextran-coated iron oxide nanoparticle-improved therapeutic effects of human mesenchymal stem cells in a mouse model of Parkinson's disease. Nanoscale 10(6):2998–3007PubMedPubMedCentralCrossRefGoogle Scholar
  66. Clark MS, Bond MJ, Hecker JR (2007) Environmental stress, psychological stress and allostatic load. Psychol Health Med 12:18–30PubMedCrossRefGoogle Scholar
  67. Clavaguera F, Hench J, Goedert M, Tolnay M (2015) Invited review: prion-like transmission and spreading of tau pathology. Neuropathol Appl Neurobiol 41:47–58PubMedCrossRefGoogle Scholar
  68. Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, Fraser G, Stalder AK, Beibel M, Staufenbiel M, Jucker M, Goedert M, Tolnay M (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11:909–913PubMedPubMedCentralCrossRefGoogle Scholar
  69. Clemens-Hemmelmann M, Kuffner C, Metz V, Kircher L, Schmitt U, Hiemke C, Postina R, Zentel R (2016) Amphiphilic copolymers shuttle drugs across the blood-brain barrier. Macromol Biosci 16(5):655–665PubMedCrossRefGoogle Scholar
  70. Collinge J (2016) Mammalian prions and their wider relevance in neurodegenerative diseases. Nature 539:217–226PubMedCrossRefGoogle Scholar
  71. Corace G, Angeloni C, Malaguti M, Hrelia S, Stein PC, Brandl M, Gotti R, Luppi B (2014) Multifunctional liposomes for nasal delivery of the anti-Alzheimer drug tacrine hydrochloride. J Liposome Res 24(4):323–335PubMedCrossRefGoogle Scholar
  72. Coyle-Gilchrist IT, Dick KM, Patterson K, Vazquez Rodriquez P, Wehmann E, Wilcox A, Lansdall CJ, Dawson KE, Wiggins J, Mead S, Brayne C, Rowe JB (2016) Prevalence, characteristics, and survival of frontotemporal lobar degeneration syndromes. Neurology 86:1736–1743PubMedPubMedCentralCrossRefGoogle Scholar
  73. Cui NN, Lu H, Li M (2018) Transferrin receptor antibodies for Alzheimer's disease. J Biomed Nanotechnol 14(5):1017–1024PubMedCrossRefGoogle Scholar
  74. Cummings J (2018) Lessons learned from Alzheimer disease: clinical trials with negative outcomes. Clin Transl Sci 11:147–152PubMedCrossRefGoogle Scholar
  75. Debnath K, Pradhan N, Singh BK, Jana NR, Jana NR (2017) Poly(trehalose) nanoparticles prevent amyloid aggregation and suppress polyglutamine aggregation in a Huntington's disease model mouse. ACS Appl Mater Interfaces 9(28):24126–24139PubMedCrossRefGoogle Scholar
  76. Demeritte T, Nellore BPV, Kanchanapally R, Sinha SS, Pramanik A, Chavva SR, Ray PC (2015) Hybrid graphene oxide based plasmonic-magnetic multifunctional nanoplatform for selective separation and label-free identification of Alzheimer's disease biomarkers. ACS Appl Mater Interfaces 7(24):13693–13700PubMedPubMedCentralCrossRefGoogle Scholar
  77. Demirel M, Yazan Y, Muller RH, Kilic F, Bozan B (2001) Formulation and in vitro-in vivo evaluation of piribedil solid lipid micro- and nanoparticles. J Microencapsul 18(3):359–371PubMedCrossRefGoogle Scholar
  78. Di Stefano A, Iannitelli A, Laserra S, Sozio P (2011) Drug delivery strategies for Alzheimer's disease treatment. Expert Opin Drug Deliv 8(5):581–603PubMedCrossRefGoogle Scholar
  79. Do TD, Ul Amin F, Noh Y, Kim MO, Yoon J (2016) Guidance of magnetic nanocontainers for treating Alzheimer's disease using an elctromagnetic, targeted drug-delivery actuator. J Biomed Nanotechnol 12(3):569–574PubMedCrossRefGoogle Scholar
  80. Drug Bank (2019) Riluzole. https://www.drugbank.ca/drugs/DB00740
  81. Eberhardt R, Birbamer G, Gerstenbrand F, Rainer E, Traegner H (1990) Citicoline in the treatment of Parkinson's disease. Clin Ther 12(6):489–495PubMedGoogle Scholar
  82. Elmizadeh H, Khanmohammadi M, Ghasemi K, Hassanzadeh G, Nassiri-Asl M, Garmarudi AB (2013) Preparation and optimization of chitosan nanoparticles and magnetic chitosan nanoparticles as delivery systems using box-Behnken statistical design. J Pharm Biomed Anal 80:141–146PubMedCrossRefGoogle Scholar
  83. Eslami M, Nikkhah SJ, Hashemianzadeh SM, Sajadi SAS (2016) The compatibility of memantine molecule with poly(n-butylcyanoacrylate) and chitosan as efficient carriers for drug delivery: a molecular dynamics study. Eur J Pharm Sci 82:79–85PubMedCrossRefGoogle Scholar
  84. Esposito E, Fantin M, Marti M, Drechsler M, Paccamiccio L, Mariani P, Sivieri E, Lain F, Menegatti E, Morari M, Cortesi R (2008) Solid lipid nanoparticles as delivery systems for bromocriptine. Pharm Res 25(7):1521–1530PubMedCrossRefGoogle Scholar
  85. Esposito E, Mariani P, Ravani L, Contado C, Volta M, Bido S, Drechsler M, Mazzoni S, Menegatti E, Morari M, Cortesi R (2012) Nanoparticulate lipid dispersions for bromocriptine delivery: characterization and in vivo study. Eur J Pharm Biopharm 80(2):306–314PubMedCrossRefGoogle Scholar
  86. Falcon B, Zhang W, Murzin AG, Murshudov G, Garringer HJ, Vidal R, Crowther RA, Ghetti B, Scheres SHW, Goedert M (2018) Structures of filaments from Pick's disease reveal a novel tau protein fold. Nature 561:137–140PubMedPubMedCentralCrossRefGoogle Scholar
  87. Fan LX, Wang JP, Meng FR, Luo Y, Sui X, Zhao BQ, Li WH, Quan DQ, Yang J, Wang YG (2018a) Delivering the acetylcholine neurotransmitter by nanodrugs as an effective treatment for Alzheimer's disease. J Biomed Nanotechnol 14(12):2066–2076PubMedCrossRefGoogle Scholar
  88. Fan SN, Zheng YQ, Liu X, Fang WL, Chen XY, Liao W, Jing XN, Lei M, Tao EX, Ma QL, Zhang XM, Guo R, Liu J (2018b) Curcumin-loaded PLGA-PEG nanoparticles conjugated with B6 peptide for potential use in Alzheimer's disease. Drug Deliv 25(1):1044–1055PubMedPubMedCentralCrossRefGoogle Scholar
  89. Fardanesh A, Zibaie S, Shariati B, Attar F, Rouhollah F, Akhtari K, Shahpasand K, Saboury AA, Falahati M (2019) Amorphous aggregation of tau in the presence of titanium dioxide nanoparticles: biophysical, computational, and cellular studies. Int J Nanomedicine 14:901–911PubMedPubMedCentralCrossRefGoogle Scholar
  90. Fazil M, Md S, Hague S, Kumar M, Baboota S, Sahni JK, Ali J (2012a) Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur J Pharm Sci 47(1):6–15CrossRefGoogle Scholar
  91. Fazil M, Shadab BS, Sahni JK, Ali J (2012b) Nanotherapeutics for Alzheimer’s disease: past, present and future. J Drug Target 20(2):97–113PubMedCrossRefGoogle Scholar
  92. Fernandes C, Martins C, Fonseca A, Nunes R, Matos MJ, Silva R, Garrido J, Sarmento B, Remiao F, Otero-Espinar FJ, Uriarte E, Borges F (2018) PEGylated PLGA nanoparticles as a smart carrier to increase the cellular uptake of a coumarin-based monoamine oxidase B inhibitor. ACS Appl Mater Interfaces 10(46):39557–39569PubMedCrossRefGoogle Scholar
  93. Fernandez T, Martinez-Serrano A, Cusso L, Desco M, Ramos-Gomez M (2018) Functionalization and characterization of magnetic nanoparticles for the detection of ferritin accumulation in Alzheimer's disease. ACS Chem Neurosci 9(5):912–924PubMedCrossRefGoogle Scholar
  94. Fernandez-Cabada T, Ramos-Gomez M (2019) A novel contrast agent based on magnetic nanoparticles for cholesterol detection as Alzheimer's disease biomarker. Nanoscale Res Lett 14:36PubMedPubMedCentralCrossRefGoogle Scholar
  95. Fitzpatrick AWP, Falcon B, He S, Murzin AG, Murshudov G, Garringer HJ, Crowther RA, Ghetti B, Goedert M, Scheres SHW (2017) Cryo-EM structures of tau filaments from Alzheimer's disease. Nature 547:185–190PubMedPubMedCentralCrossRefGoogle Scholar
  96. Fornaguera C, Feiner-Gracia N, Caldero G, Garcia-Celma MJ, Solans C (2015) Galantamine-loaded PLGA nanoparticles, from nano-emulsion templating, as novel advanced drug delivery systems to treat neurodegenerative diseases. Nanoscale 7(28):12076–12084PubMedCrossRefGoogle Scholar
  97. Frost B, Ollesch J, Wille H, Diamond MI (2009) Conformational diversity of wild-type tau fibrils specified by templated conformation change. J Biol Chem 284:3546–3551PubMedPubMedCentralCrossRefGoogle Scholar
  98. Frozza RL, Bernardi A, Hoppe JB, Meneghetti AB, Matte A, Battastini AMO, Pohlmann AR, Guterres SS, Salbego C (2013a) Neuroprotective effects of resveratrol against Aβ administration in rats are improved by lipid-core nanocapsules. Mol Neurobiol 47(3):1066–1080 PubMedCrossRefGoogle Scholar
  99. Frozza RL, Bernardi A, Hoppe JB, Meneghetti AB, Battastini AMO, Pohlmann AR, Guterres SS, Salbego C (2013b) Lipid-core nanocapsules improve the effects of resveratrol against Aβ-induced neuroinflammation. J Biomed Nanotechnol 9(12):2086–2104PubMedCrossRefGoogle Scholar
  100. Gabal YM, Kamel AO, Sammour OA, El Shafeey AH (2014) Effect of surface charge on the brain delivery of nanostructured lipid carriers in situ gels via the nasal route. Int J Pharm 473(1–2):442–457PubMedCrossRefGoogle Scholar
  101. Gajofatto A, Benedetti MD (2015) Treatment strategies for multiple sclerosis: when to start, when to change, when to stop? World J Clin Cases 3(7):545–555PubMedPubMedCentralCrossRefGoogle Scholar
  102. Gamblin TC, Chen F, Zambrano A, Abraha A, Lagalwar S, Guillozet AL, Lu M, Fu Y, Garcia-Sierra F, LaPointe N, Miller R, Berry RW, Binder LI, Cryns VL (2003) Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer's disease. Proc Natl Acad Sci USA 100:10032–10037PubMedCrossRefGoogle Scholar
  103. Gao N, Dong K, Zhao AD, Sun HJ, Wang Y, Ren JS, Qu XG (2016) Polyoxometalate-based nanozyme: design of a multifunctional enzyme for multi-faceted treatment of Alzheimer's disease. Nano Res 9(4):1079–1090CrossRefGoogle Scholar
  104. Gao GB, Chen R, He M, Li J, Li J, Wang LY, Sun TL (2019) Gold nanoclusters for Parkinson's disease treatment. Biomaterials 194:36–46PubMedCrossRefGoogle Scholar
  105. Ghalandari B, Asadollahi K, Shakerizadeh A, Komeili A, Riazi G, Kamrava SK, Attaran N (2019) Microtubule network as a potential candidate for targeting by gold nanoparticle-assisted photothermal therapy. J Photochem Photobiol B 192:131–140PubMedCrossRefGoogle Scholar
  106. Giau VV, An SSA, Hulme JP (2018) Mitochondrial therapeutic interventions in Alzheimer's disease. J Neurol Sci 395:62–70PubMedCrossRefGoogle Scholar
  107. Giglio V, Bellia F, Oliveri V, Vecchio G (2016) Aminocyclodextrin oligomers as protective agents of protein aggregation. Chem Plus Chem 81(7):660–665Google Scholar
  108. Godinho BMDC, Ogier JR, Darcy R, Driscoll CM, Cryan JF (2013) Self-assembling modified β-cyclodextrin nanoparticles as neuronal siRNA delivery vectors: focus on Huntington's disease. Mol Pharm 10(2):640–649PubMedCrossRefGoogle Scholar
  109. Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, Ogar JM, Rohrer JD, Black S, Boeve BF, Manes F, Dronkers NF, Vandenberghe R, Rascovsky K, Patterson K, Miller BL, Knopman DS, Hodges JR, Mesulam MM, Grossman M (2011) Classification of primary progressive aphasia and its variants. Neurology 76:1006–1014PubMedPubMedCentralCrossRefGoogle Scholar
  110. Gothwal A, Nakhate KT, Alexander A, Ajazuddin, Gupta U (2018) Boosted memory and improved brain bioavailability of rivastigmine: targeting effort to the brain using covalently tethered lower generation PAMAM dendrimers with lactoferrin. Mol Pharm 15(10):4538–4549PubMedCrossRefGoogle Scholar
  111. Goyal K, Koul V, Singh Y, Anand A (2014) Targeted drug delivery to central nervous system (CNS) for the treatment of neurodegenerative disorders: trends and advances. Cent Nerv Syst Agents Med Chem 14(1):43–59PubMedCrossRefGoogle Scholar
  112. Grinberg LT, Heinsen H (2009) Argyrophilic grain disease: an update about a frequent cause of dementia. Dementia e Neuropsychologia 3:2–7CrossRefGoogle Scholar
  113. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein τ (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917PubMedCrossRefGoogle Scholar
  114. Gulati N, Nagaich U, Saraf S (2014) Fabrication and in vitro characterization of polymeric nanoparticles for Parkinson's therapy: a novel approach. Braz J Pharm Sci 50(4):869–876CrossRefGoogle Scholar
  115. Gumpelmayer M, Nguyen M, Molnar G, Bousseksou A, Meunier B, Robert A (2018) Magnetite Fe3O4 has no intrinsic peroxidase activity, and is probably not involved in Alzheimer's oxidative stress. Angew Chem Int Ed 57(45):14758–14763CrossRefGoogle Scholar
  116. Guo Q, You HH, Yang X, Lin BC, Zhu ZH, Lu ZS, Li XX, Zhao Y, Mao L, Shen SP, Cheng H, Zhang J, Deng L, Fan J, Xi Z, Li R, Li CM (2017a) Functional single-walled carbon nanotubes 'CAR' for targeting dopamine delivery into the brain of parkinsonian mice. Nanoscale 9(30):10832–10845PubMedCrossRefGoogle Scholar
  117. Guo JJ, Sun WQ, Liu FF (2017b) Brazilin inhibits the Zn2+-mediated aggregation of amyloid β-protein and alleviates cytotoxicity. J Inorg Biochem 177:183–189PubMedCrossRefGoogle Scholar
  118. Guo T, Noble W, Hanger DP (2017c) Roles of tau protein in health and disease. Acta Neuropathol 133(5):665–704PubMedPubMedCentralCrossRefGoogle Scholar
  119. Hajimohammadjafartehrani M, Hosseinali SH, Dehkohneh A, Ghoraeian P, Ale-Ebrahim M, Akhtari K, Shahpasand K, Saboury AA, Attar F, Falahati M (2019) The effects of nickel oxide nanoparticles on tau protein and neuron-like cells: biothermodynamics and molecular studies. Int J Biol Macromol 127:330–339PubMedCrossRefGoogle Scholar
  120. Hajsalimi G, Taheri S, Shahi F, Attar F, Ahmadi H, Falahati M (2018) Interaction of iron nanoparticles with nervous system: an in vitro study. J Biomol Struct Dyn 36(4):928–937PubMedCrossRefGoogle Scholar
  121. Han QS, Wang XH, Liu XL, Zhang YF, Cai SF, Qi C, Wang C, Yang R (2019) MoO3-x nanodots with dual enzyme mimic activities as multifunctional modulators for amyloid assembly and neurotoxicity. J Colloid Interface Sci 539:575–584PubMedCrossRefGoogle Scholar
  122. Hanafy AS, Farid RM, El Gamal SS (2015) Complexation as an approach to entrap cationic drugs into cationic nanoparticles administered intranasally for Alzheimer's disease management: preparation and detection in rat brain. Drug Dev Ind Pharm 41(12):2055–2068PubMedCrossRefGoogle Scholar
  123. Hao CL, Qu AH, Xu LG, Sun MZ, Zhang HY, Xu CL, Kuang H (2019) Chiral molecule-mediated porous CuxO nanoparticle clusters with antioxidation activity for ameliorating Parkinson's disease. J Am Chem Soc 141(2):1091–1099PubMedCrossRefGoogle Scholar
  124. Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W, Shaw PJ, Simmons Z, van den Berg LH (2017) Amyotrophic lateral sclerosis. Nat Rev Dis Primers 3:17071PubMedCrossRefGoogle Scholar
  125. Hassani S, Laouini A, Fessi H, Charcosset C (2015) Preparation of chitosan-TPP nanoparticles using microengineered membranes - effect of parameters and encapsulation of tacrine. Colloids Surf A Physicochem Eng Asp 482:34–43CrossRefGoogle Scholar
  126. Hassanzadeh K, Nikzaban M, Moloudi MR, Izadpanah E (2015) Effect of selegiline on neural stem cells differentiation: a possible role for neurotrophic factors. Iran J Basic Med Sci 18(6):548–554Google Scholar
  127. He ZZ, Elbaz A, Gao BB, Zhang JN, Su EB, Gu ZZ (2018) Disposable Morpho menelaus based flexible microfluidic and electronic sensor for the diagnosis of neurodegenerative disease. Adv Healthc Mater 7(5):1701306CrossRefGoogle Scholar
  128. Hegazy MA, Maklad HM, Abd Elmonsif DA, Elnozhy FY, Alqubiea MA, Alenezi FA, Al Abbas OM, Al Abbas MM (2017a) The possible role of cerium oxide (CeO2) nanoparticles in prevention of neurobehavioral and neurochemical changes in 6-hydroxydopamine-induced parkinsonian disease. Alexandria J Med 53(4):351–360CrossRefGoogle Scholar
  129. Hegazy MA, Maklad HM, Samy DM, Abdelmonsif DA, El Sabaa BM, Elnozahy FY (2017b) Cerium oxide nanoparticles could ameliorate behavioral and neurochemical impairments in 6-hydroxydopamine induced Parkinson's disease in rats. Neurochem Int 108:361–371PubMedCrossRefGoogle Scholar
  130. Hemmelmann M, Knoth C, Schmitt U, Allmeroth M, Moderegger D, Barz M, Koynov K, Hiemke C, Roesch F, Zentel R (2011) HPMA based amphiphilic copolymers mediate central nervous effects of domperidone. Macromol Rapid Commun 32(9–10):712–717PubMedCrossRefGoogle Scholar
  131. Hemmelmann M, Metz VV, Koynov K, Blank K, Postina R, Zentel R (2012) Amphiphilic HPMA-LMA copolymers increase the transport of Rhodamine 123 across a BBB model without harming its barrier integrity. J Control Release 163(2):170–177PubMedCrossRefGoogle Scholar
  132. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K, Frautschy SA, Finsen B, Brown GC, Verkhratsky A, Yamanaka K, Koistinaho J, Latz E, Halle A, Petzold GC, Town T, Morgan D, Shinohara ML, Perry VH, Holmes C, Bazan NG, Brooks DJ, Hunot S, Joseph B, Deigendesch N, Garaschuk O, Boddeke E, Dinarello CA, Breitner JC, Cole GM, Golenbock DT, Kummer MP (2015) Neuroinflammation in Alzheimer's disease. Lancet Neurol 14:388–405PubMedPubMedCentralCrossRefGoogle Scholar
  133. Hernando S, Herran E, Figueiro-Silva J, Pedraz JL, Igartua M, Carro E, Hernandez RM (2018) Intranasal administration of TAT-conjugated lipid nanocarriers loading GDNF for Parkinson's disease. Mol Neurobiol 55(1):145–155PubMedCrossRefGoogle Scholar
  134. Hobart J, Cano S, Posner H, Selnes O, Stern Y, Thomas R, Zajicek J (2013) Putting the Alzheimer's cognitive test to the test I: traditional psychometric methods. Alzheimers Dement 9:S4–S9PubMedCrossRefGoogle Scholar
  135. Hong S, Choi I, Lee S, Yang YI, Kang T, Yi J (2009) Sensitive and colorimetric detection of the structural evolution of superoxide dismutase with gold nanoparticles. Anal Chem 81:1378–1382PubMedCrossRefGoogle Scholar
  136. Horiguchi T, Uryu K, Giasson BI, Ischiropoulos H, Lightfoot R, Bellmann C, Richter-Landsberg C, Lee VM, Trojanowski JQ (2003) Nitration of tau protein is linked to neurodegeneration in tauopathies. Am J Pathol 163:1021–1031PubMedPubMedCentralCrossRefGoogle Scholar
  137. Hosseinali SH, Boushehri ZP, Rasti B, Mirpour M, Shahpasand K, Falahati M (2019) Biophysical, molecular dynamics and cellular studies on the interaction of nickel oxide nanoparticles with tau proteins and neuron-like cells. Int J Biol Macromol 125:778–784PubMedCrossRefGoogle Scholar
  138. Hsu SH, Wen CJ, Al-Suwayeh SA, Chang HW, Yen TC, Fang JY (2010) Physicochemical characterization and in vivo bioluminescence imaging of nanostructured lipid carriers for targeting the brain: apomorphine as a model drug. Nanotechnology 21(40):405101PubMedCrossRefGoogle Scholar
  139. Hsu SH, Al-Suwayeh SA, Chen CC, Chi CH, Fang JY (2011) PEGylated liposomes incorporated with nonionic surfactants as an apomorphine delivery system targeting the brain: in vitro release and in vivo real-time imaging. Curr Nanosci 7(2):191–199CrossRefGoogle Scholar
  140. Huang M, Hu M, Song QX, Song HH, Huang JL, Gu X, Wang XL, Chen J, Kang T, Feng XY, Jiang D, Zheng G, Chen H, Gao X (2015) GM1-modified lipoprotein-like nanoparticle: multifunctional nanoplatform for the combination therapy of Alzheimer's disease. ACS Nano 9(11):10801–10816PubMedCrossRefGoogle Scholar
  141. Huo XL, Zhang YQ, Jin XC, Li YG, Zhang L (2019) A novel synthesis of selenium nanoparticles encapsulated PLGA nanospheres with curcumin molecules for the inhibition of amyloid β aggregation in Alzheimer's disease. J Photochem Photobiol B 190:98–102PubMedCrossRefGoogle Scholar
  142. Hwang TL, Lin YK, Chi CH, Huang TH, Fang JY (2009) Development and evaluation of perfluorocarbon nanobubbles for apomorphine delivery. J Pharm Sci 98(10):3735–3747PubMedCrossRefGoogle Scholar
  143. Ianiski FR, Alves CB, Souza ACG, Pinton S, Roman SS, Rhoden CRB, Alves MP, Luchese C (2012) Protective effect of meloxicam-loaded nanocapsules against amyloid-β peptide-induced damage in mice. Behav Brain Res 230(1):100–107PubMedCrossRefGoogle Scholar
  144. Ianiski FR, Alves CB, Ferreira CF, Rech VC, Savegnago L, Wilhelm EA, Luchese C (2016) Meloxicam-loaded nanocapsules as an alternative to improve memory decline in an Alzheimer's disease model in mice: involvement of Na+, K+-ATPase. Metab Brain Dis 31(4):793–802PubMedCrossRefGoogle Scholar
  145. Ikeda K, Okada T, Sawada S, Akiyoshi K, Matsuzaki K (2006) Inhibition of the formation of amyloid β-protein fibrils using biocompatible nanogels as artificial chaperones. FEBS Lett 580(28–29):6587–6595PubMedCrossRefGoogle Scholar
  146. Iqbal K, Liu F, Gong CX, Grundke-Iqbal I (2010) Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 7(8):656–664PubMedPubMedCentralCrossRefGoogle Scholar
  147. Ishii T, Kawakami E, Endo K, Misawa H, Watabe K (2017) Formation and spreading of TDP-43 aggregates in cultured neuronal and glial cells demonstrated by time-lapse imaging. PLoS One 12:e0179375PubMedPubMedCentralCrossRefGoogle Scholar
  148. Ismail MF, El Meshad AN, Salem NAH (2013) Potential therapeutic effect of nanobased formulation of rivastigmine on rat model of Alzheimer's disease. Int J Nanomedicine 8:393–406PubMedPubMedCentralCrossRefGoogle Scholar
  149. Jafarieh O, Md S, Ali M, Baboota S, Sahni JK, Kumari B, Bhatnagar A, Ali J (2015) Design, characterization, and evaluation of intranasal delivery of ropinirole-loaded mucoadhesive nanoparticles for brain targeting. Drug Dev Ind Pharm 41(10):1674–1681CrossRefGoogle Scholar
  150. Jain NK, Rana AC, Jain SK (1998) Brain drug delivery system bearing dopamine hydrochloride for effective management of Parkinsonism. Drug Dev Ind Pharm 24(7):671–675PubMedCrossRefGoogle Scholar
  151. Jampílek J, Kráľová K (2015) Application of nanotechnology in agriculture and food industry, its prospects and risks. Ecological Chemistry and Engineering S 22(3):321–361CrossRefGoogle Scholar
  152. Jampílek J, Kráľová K (2017a) Nanopesticides: preparation, targeting and controlled release. In: Grumezescu AM (ed) Nanotechnology in the Agri-food industry, Vol. 10 – New pesticides and soil sensors. Elsevier, London, pp 81–127CrossRefGoogle Scholar
  153. Jampílek J, Kráľová K (2017b) Nano-antimicrobials: activity, benefits and weaknesses. In: Ficai A, Grumezescu AM (eds) Nanostructures in therapeutic medicine, Vol. 2 – Nanostructures for antimicrobial therapy. Elsevier, Amsterdam, pp 23–54CrossRefGoogle Scholar
  154. Jampílek J, Kráľová K (2017c) Nanomaterials for delivery of nutrients and growth-promoting compounds to plants. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology: An agricultural paradigm. Springer, Singapore, pp 177–226CrossRefGoogle Scholar
  155. Jampílek J, Kráľová K (2018a) Application of nanobioformulations for controlled release and targeted biodistribution of drugs. In: Sharma AK, Keservani RK, Kesharwani RK (eds) Nanobiomaterials: applications in drug delivery. CRC Press, Warentown, pp 131–208CrossRefGoogle Scholar
  156. Jampílek J, Kráľová K (2018b) Nanomaterials applicable in food protection. In: Rai RV, Bai JA (eds) Nanotechnology applications in the food industry. Taylor & Francis Group, Boca Raton, pp 75–96CrossRefGoogle Scholar
  157. Jampílek J, Kráľová K (2018c) Benefits and potential risks of nanotechnology applications in crop protection. In: Abd-Elsalam K, Prasad R (eds) Nanobiotechnology applications in plant protection. Springer, Cham, pp 189–246CrossRefGoogle Scholar
  158. Jampílek J, Kráľová K (2019a) Nanotechnology based formulations for drug targeting to central nervous system. In: Keservani RK, Sharma AK (eds) Nanoparticulate drug delivery systems. Apple Academic Press & CRC Press, Warentown, pp 151–220CrossRefGoogle Scholar
  159. Jampílek J, Kráľová K (2019b) Nano-biopesticides in agriculture: state of art and future opportunities. In: Koul O (ed) Nano-biopesticides today and future perspectives. Academic Press & Elsevier, Amsterdam, pp 397–447CrossRefGoogle Scholar
  160. Jampílek J, Kráľová K (2019c) Recent advances in lipid nanocarriers applicable in the fight against cancer. In: Grumezescu AM (ed) Nanoarchitectonics in biomedicine. Elsevier, Amsterdam, pp 219–294CrossRefGoogle Scholar
  161. Jampílek J and Kráľová K (2019d) Impact of nanoparticles on photosynthesizing organisms and their use in hybrid structures with some components of photosynthetic apparatus. In: Plant Nanobionics. Nanotechnology in the life sciences – Vol. 1– Advances in the understanding of nanomaterials research and applications. Prasad R (Ed.). Springer, pp. 255–332Google Scholar
  162. Jampílek J, Kráľová K (2019e) Natural biopolymeric nanoformulations for brain drug delivery. In: Keservani RK, Sharma AK, Kesharwani RK (eds) Nanocarriers for brain targeting: Principles and applications. CRC Press, Warentown, pp 131–204CrossRefGoogle Scholar
  163. Jampílek J, Kos J, Kráľová K (2019) Potential of nanomaterial applications in dietary supplements and foods for special medical purposes. Nanomaterials 9(2):296PubMedCentralCrossRefPubMedGoogle Scholar
  164. Jaruszewski KM, Ramakrishnan S, Poduslo JF, Kandimalla KK (2012) Chitosan enhances the stability and targeting of immuno-nanovehicles to cerebro-vascular deposits of Alzheimer's disease amyloid protein. Nanomedicine 8(2):250–260PubMedCrossRefGoogle Scholar
  165. Jaruszewski KM, Curran GL, Swaminathan SK, Rosenberg JT, Grant SC, Ramakrishnan S, Lowe VJ, Poduslo JF, Kandimalla KK (2014) Multimodal nanoprobes to target cerebrovascular amyloid in Alzheimer's disease brain. Biomaterials 35(6):1967–1976PubMedCrossRefGoogle Scholar
  166. Jellinger KA, Attems J (2015) Challenges of multimorbidity of the aging brain: a critical update. J Neural Transm 122:505–521PubMedCrossRefGoogle Scholar
  167. Jeon MSSG, Cha MY, Kim JI, Hwang TW, Kim KA, Kim TH, Song KC, Kim JJ, Moon M (2019) Vitamin D-binding protein-loaded PLGA nanoparticles suppress Alzheimer's disease-related pathology in 5XFAD mice. Nanomedicine 17:297–307PubMedCrossRefGoogle Scholar
  168. Jiang ZQ, Dong XY, Liu H, Wang YJ, Zhang L, Sun Y (2016) Multifunctionality of self-assembled nanogels of curcumin-hyaluronic acid conjugates on inhibiting amyloid β-protein fibrillation and cytotoxicity. React Funct Polym 104:22–29CrossRefGoogle Scholar
  169. Jiang ZQ, Dong XY, Yan X, Liu Y, Zhang L, Sun Y (2018) Nanogels of dual inhibitor-modified hyaluronic acid function as a potent inhibitor of amyloid β-protein aggregation and cytotoxicity. Sci Rep 8:3505PubMedPubMedCentralCrossRefGoogle Scholar
  170. Jin GZ, Kim M, Shin US, Kim HW (2011) Neurite outgrowth of dorsal root ganglia neurons is enhanced on aligned nanofibrous biopolymer scaffold with carbon nanotube coating. Neurosci Lett 501:10–14PubMedCrossRefGoogle Scholar
  171. Joe VF, Kumar SS (2018) Formulation, characterization and determination of anti-Alzheimeric activity of tacrine loaded poly(lactide-co-glycolide) nanoparticles. Int J Pharm Sci Res 9(12):5111–5120Google Scholar
  172. John T, Gladytz A, Kubeil C, Martin LL, Risselada HJ, Abel B (2018) Impact of nanoparticles on amyloid peptide and protein aggregation: a review with a focus on gold nanoparticles. Nanoscale 10(45):20894–20913PubMedCrossRefGoogle Scholar
  173. Johnsen KB, Burkhart A, Melander F, Kempen PJ, Vejlebo JB, Siupka P, Schallburg-Nielsen M, Andresen TL, Moos T (2017) Targeting transferrin receptors at the blood-brain barrier improves the uptake of immunoliposomes and subsequent cargo transport into the brain parenchyma. Sci Rep 7:10396PubMedPubMedCentralCrossRefGoogle Scholar
  174. Josephs KA, Hodges JR, Snowden JS, Mackenzie IR, Neumann M, Mann DM, Dickson DW (2011) Neuropathological background of phenotypical variability in frontotemporal dementia. Acta Neuropathol 122:137–153PubMedPubMedCentralCrossRefGoogle Scholar
  175. Joshi SA, Chavhan SS, Sawant KK (2010) Rivastigmine-loaded PLGA and PBCA nanoparticles: preparation, optimization, characterization, in vitro and pharmacodynamic studies. Eur J Pharm Biopharm 76(2):189–199PubMedCrossRefGoogle Scholar
  176. Joshi AS, Singh V, Gahane AY, Thakur AK (2019) Biodegradable nanoparticles containing mechanism based peptide inhibitors reduce polyglutamine aggregation in cell models and alleviate motor symptoms in Drosophila model of Huntington's disease. ACS Chem Neurosci 10(3):1603–1614PubMedCrossRefGoogle Scholar
  177. Kanazirska MV, Fuchs PM, Chen LP, Lal S, Verma J, Vassilev PM (2012) Beneficial effects of lysosome-modulating and other pharmacological and nanocarrier agents on amyloid-beta-treated cells. Curr Pharm Biotechnol 13(15):2761–2767PubMedCrossRefGoogle Scholar
  178. Kandanapitiye MS, Wang FJ, Valley B, Gunathilake C, Jaroniec M, Huang SD (2015a) Selective ion exchange governed by the Irving-Williams series in K2Zn3[Fe(CN)6]2 nanoparticles: toward a designer prodrug for Wilson's disease. Inorg Chem 54(4):1212–1214Google Scholar
  179. Kandanapitiye MS, Gunathilake C, Jaroniec M, Huang SD (2015b) Biocompatible D-penicillamine conjugated Au nanoparticles: targeting intracellular free copper ions for detoxification. J Mater Chem B 3(27):5553–5559PubMedPubMedCentralCrossRefGoogle Scholar
  180. Kang YJ, Cutler EG, Cho HS (2018) Therapeutic nanoplatforms and delivery strategies for neurological disorders. Nano Convergence 5:35PubMedPubMedCentralCrossRefGoogle Scholar
  181. Karaboga MNS, Sezginturk MK (2019) Cerebrospinal fluid levels of alpha-synuclein measured using a poly-glutamic acid-modified gold nanoparticle-doped disposable neuro-biosensor system. Analyst 144(2):611–621CrossRefGoogle Scholar
  182. Karavasili C, Bouropoulos N, Sygellou L, Amanatiadou EP, Vizirianakis IS, Fatouros DG (2016) PLGA/DPPC/trimethylchitosan spray-dried microparticles for the nasal delivery of ropinirole hydrochloride: in vitro, ex vivo and cytocompatibility assessment. Mater Sci Eng C Mater Biol Appl 59:1053–1062PubMedCrossRefGoogle Scholar
  183. Karthivashan G, Ganesan P, Park SY, Kim JS, Choi DK (2018) Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer's disease. Drug Deliv 25(1):307–320PubMedPubMedCentralCrossRefGoogle Scholar
  184. Kaufman SK, Sanders DW, Thomas TL, Ruchinskas AJ, Vaquer-Alicea J, Sharma AM, Miller TM, Diamond MI (2016) Tau prion strains dictate patterns of cell pathology, progression rate, and regional vulnerability in vivo. Neuron 92:796–812PubMedPubMedCentralCrossRefGoogle Scholar
  185. Kaushik AC, Bharadwaj S, Kumar S, Wei DQ (2018) Nano-particle mediated inhibition of Parkinson's disease using computational biology approach. Sci Rep 8:9169PubMedPubMedCentralCrossRefGoogle Scholar
  186. Kermani ZR, Haghighi SS, Hajihosseinali S, Fashami AZ, Akbaritouch T, Akhtari K, Shahpasand K, Falahati M (2018) Aluminium oxide nanoparticles induce structural changes in tau and cytotoxicity of the neuroblastoma cell line. Int J Biol Macromol 120(Pt a):1140–1148PubMedCrossRefGoogle Scholar
  187. Kheradmand E, Moghaddam AH, Zare M (2018) Neuroprotective effect of hesperetin and nano-hesperetin on recognition memory impairment and the elevated oxygen stress in rat model of Alzheimer's disease. Biomed Pharmacother 97:1096–1101PubMedCrossRefGoogle Scholar
  188. Kim H, Lee JU, Song S, Kim S, Sim SJ (2018) A shape-code nanoplasmonic biosensor for multiplex detection of Alzheimer's disease biomarkers. Biosens Bioelectron 101:96–102PubMedCrossRefGoogle Scholar
  189. Kovacech B, Novák M (2010) Tau truncation is a productive posttranslational modification of neurofibrillary degeneration in Alzheimer's disease. Curr Alzheimer Res 7:708–716PubMedCrossRefGoogle Scholar
  190. Kovacech B, Skrabana R, Novák M (2010) Transition of tau protein from disordered to misordered in Alzheimer's disease. Neurodegener Dis 7:24–27PubMedCrossRefGoogle Scholar
  191. Kozik V, Bąk A, Pentak D, Hachuła B, Pytlakowska K, Rojkiewicz M, Jampílek J, Sieroń K, Jazowiecka-Rakus J, Sochanik A (2019) Derivatives of graphene oxide as potential drug carriers. J Nanosci Nanotechnol 19(5):2489–2492PubMedCrossRefGoogle Scholar
  192. Kulikova OI, Berezhnoy DS, Stvolinsky SL, Lopachev AV, Orlova VS, Fedorova TN (2018) Neuroprotective effect of the carnosine - α-lipoic acid nanomicellar complex in a model of early-stage Parkinson's disease. Regul Toxicol Pharmacol 95:254–259PubMedCrossRefGoogle Scholar
  193. Kumar S, Dang S, Nigam K, Ali J, Baboota S (2018a) Selegiline nanoformulation in attenuation of oxidative stress and upregulation of dopamine in the brain for the treatment of Parkinson's disease. Rejuvenation Res 21(5):464–476PubMedCrossRefGoogle Scholar
  194. Kumar P, Choonara YE, du Toit LC, Singh N, Pillay V (2018b) In vitro and in silico analyses of nicotine release from a gelisphere-loaded compressed polymeric matrix for potential Parkinson's disease interventions. Pharmaceutics 10(4):233PubMedCentralCrossRefPubMedGoogle Scholar
  195. Kumar J, Erana H, Lopez-Martinez E, Claes N, Martin VF, Solis DM, Bals S, Cortajarena AL, Castilla J, Liz-Marzan LM (2018c) Detection of amyloid fibrils in Parkinson's disease using plasmonic chirality. Proc Natl Acad Sci USA 115(13):3225–3230PubMedCrossRefGoogle Scholar
  196. Kunasekaran V, Krishnamoorthy K (2015) Experimental design for the optimization of nanoscale solid lipid particles containing rasagiline mesylate. J Young Pharm 7(4):285–295CrossRefGoogle Scholar
  197. Kuo YC, Rajesh R (2018) Current development of nanocarrier delivery systems for Parkinson's disease pharmacotherapy. J Taiwan Inst Chem Eng 87:15–25CrossRefGoogle Scholar
  198. Kuo YC, Tsai HC (2018) Rosmarinic acid- and curcumin-loaded polyacrylamide-cardiolipin-poly (lactide-co-glycolide) nanoparticles with conjugated 83-14 monoclonal antibody to protect β-amyloid-insulted neurons. Mater Sci Eng C Mater Biol Appl 91:445–457PubMedCrossRefGoogle Scholar
  199. Kuo YC, Tsao CW (2017) Neuroprotection against apoptosis of SK-N-MC cells using RMP-7-and lactoferrin-grafted liposomes carrying quercetin. Int J Nanomedicine 12:2857–2869PubMedPubMedCentralCrossRefGoogle Scholar
  200. Kuo YC, Lin CY, Li JS, Lou YI (2017) Wheat germ agglutinin-conjugated liposomes incorporated with cardiolipin to improve neuronal survival in Alzheimer's disease treatment. Int J Nanomedicine 12:1757–1774PubMedPubMedCentralCrossRefGoogle Scholar
  201. Kuo YC, Chen IY, Rajesh R (2018) Use of functionalized liposomes loaded with antioxidants to permeate the blood-brain barrier and inhibit β-amyloid-induced neurodegeneration in the brain. J Taiwan Inst Chem Eng 87:1–14CrossRefGoogle Scholar
  202. Kura AU, Hussein-Al-Ali SH, Hussein MZ, Fakurazi S, Arulselvan P (2013) Development of a controlled-release anti-parkinsonian nanodelivery system using levodopa as the active agent. Int J Nanomedicine 8:1103–1110Google Scholar
  203. Kura AU, Hussein-Al-Ali SH, Hussein MZ, Fakurazi S (2014a) Preparation of tween 80-Zn/Al-levodopa-layered double hydroxides nanocomposite for drug delivery system. Sci World J 2014:104246Google Scholar
  204. Kura AU, Hussein-Al-Ali SH, Hussein MZ, Fakurazi S, Hussein-Al-Ali SH (2014b) Toxicity and metabolism of layered double hydroxide intercalated with levodopa in a Parkinson's disease model. Int J Mol Sci 15(4):5916–5927PubMedPubMedCentralCrossRefGoogle Scholar
  205. Kwon HJ, Kim D, Seo K, Kim YG, Han SI, Kang T, Soh M, Hyeon T (2018) Ceria nanoparticle systems for selective scavenging of mitochondrial, intracellular, and extracellular reactive oxygen species in Parkinson's disease. Angew Chem Int Ed 57(30):9408–9412CrossRefGoogle Scholar
  206. Laserra S, Basit A, Sozio P, Marinelli L, Fornasari E, Cacciatore I, Ciulla M, Turkez H, Geyikoglu F, Di Stefano A (2015) Solid lipid nanoparticles loaded with lipoyl-memantine codrug: preparation and characterization. Int J Pharm 485(1–2):183–191PubMedCrossRefGoogle Scholar
  207. Lauzon MA, Marcos B, Faucheux N (2018) Characterization of alginate/chitosan-based nanoparticles and mathematical modeling of their SpBMP-9 release inducing neuronal differentiation of human SH-SY5Y cells. Carbohydr Polym 181:801–811PubMedCrossRefGoogle Scholar
  208. Lazar AN, Mourtas S, Youssef I, Parizot C, Dauphin A, Delatour B, Antimisiaris SG, Duyckaerts C (2013) Curcumin-conjugated nanoliposomes with high affinity for Aβ deposits: possible applications to Alzheimer disease. Nanomedicine 9(5):712–721PubMedCrossRefGoogle Scholar
  209. Ledesma MD, Bonay P, Colaco C, Avila J (1994) Analysis of microtubule-associated protein tau glycation in paired helical filaments. J Biol Chem 269:21614–21619PubMedGoogle Scholar
  210. Lee BI, Chung YJ, Par CB (2019) Photosensitizing materials and platforms for light-triggered modulation of Alzheimer's β-amyloid self-assembly. Biomaterials 190:121–132PubMedCrossRefGoogle Scholar
  211. Legendre JY, Rault I, Petit A, Luijten W, Demuynck I, Horvath S, Ginot YM, Cuine A (1995) Effects of β-cyclodextrins on skin: implications for the transdermal delivery of piribedil and a novel cognition enhancing-drug, S-9977. Eur J Pharm Sci 3(6):311–322CrossRefGoogle Scholar
  212. Lehtonen JYA, Rytomaa M, Kinnunen PKJ (1996) Characteristics of the binding of tacrine to acidic phospholipids. Biophys J 70(5):2185–2194PubMedPubMedCentralCrossRefGoogle Scholar
  213. Li WZ, Zhou YQ, Zhao N, Hao BH, Wang XN, Kong P (2012) Pharmacokinetic behavior and efficiency of acetylcholinesterase inhibition in rat brain after intranasal administration of galanthamine hydrobromide loaded flexible liposomes. Environ Toxicol Pharmacol 34(2):272–279PubMedCrossRefGoogle Scholar
  214. Li C, Lu JY, Hu XL, Feng C, Xiang Y, Karamanos Y, Li GX (2018a) Assembly of nanoconjugates as new kind inhibitor of the aggregation of amyloid peptides associated with Alzheimer's disease. Part Part Syst Charact 35(3):1700384CrossRefGoogle Scholar
  215. Li X, Xie BL, Dong XY, Sun Y (2018b) Bifunctionality of iminodiacetic acid-modified lysozyme on inhibiting Zn2+-mediated amyloid β-protein aggregation. Langmuir 34(17):5106–5115PubMedCrossRefGoogle Scholar
  216. Li X, Xie BL, Sun Y (2018c) Basified human lysozyme: a potent inhibitor against amyloid β-protein fibrillogenesis. Langmuir 34(50):15569–15577PubMedCrossRefGoogle Scholar
  217. Li XY, Liu QQ, Zhu DH, Che YZ, Feng XZ (2019a) Preparation of levodopa-loaded crystalsomes through thermally induced crystallization reverses functional deficits in Parkinsonian mice. Biomater Sci 7:1623–1631PubMedCrossRefGoogle Scholar
  218. Li B, Zhang R, Shi XH (2019b) Aggregation of amyloid peptides into fibrils driven by nanoparticles and their curvature effect. Phys Chem Chem Phys 21(4):1784–1790PubMedCrossRefGoogle Scholar
  219. Liao A (2011) Citicoline sodium liposome solid preparation useful for protecting brain and neurons, and preventing and/or treating diseases, comprises citicoline sodium, phospholipid, additive and auxiliary materials. CN patent no. 102,078.299 AGoogle Scholar
  220. Liu W, Ma S, Zhang X, Hua J, Yan L, Zhou F (2009) Rotigotine flexible liposome as pharmaceuticals, contains solid components including rotigotine, phospholipids and surface activating agent, and solvents including ether, chloroform, ethanol, aqueous ethanol solution or water. CN patent no. 101,317,819 AGoogle Scholar
  221. Liu G, Men P, Perry G, Smith MA (2010) Nanoparticle and iron chelators as a potential novel Alzheimer therapy. In: Uppu RM, Murthy SN, Pryor WA, Parinandi NL (eds) Free radicals and antioxidant protocols, 2nd edn. Springer & Humana Press, New York, pp 123–144CrossRefGoogle Scholar
  222. Liu KS, Sung KC, Al-Suwayeh SA, Ku MC, Chu CC, Wang JJ, Fang JY (2011a) Enhancement of transdermal apomorphine delivery with a diester prodrug strategy. Eur J Pharm Biopharm 78(3):422–431PubMedCrossRefGoogle Scholar
  223. Liu JJ, Wang CY, Wang JG, Ruan HJ, Fan CY (2011b) Peripheral nerve regeneration using composite poly(lactic acid-caprolactone)/nerve growth factor conduits prepared by coaxial electrospinning. J Biomed Mater Res A 96:13–20PubMedCrossRefGoogle Scholar
  224. Liu KS, Wen CJ, Yen TC, Sung KC, Ku MC, Wang JJ, Fang JY (2012) Combined strategies of apomorphine diester prodrugs and nanostructured lipid carriers for efficient brain targeting. Nanotechnology 23(9):095103PubMedCrossRefGoogle Scholar
  225. Liu ZY, Gao XL, Kang T, Jiang MY, Miao DY, Gu GZ, Hu QY, Song QX, Yao L, Tu YF, Chen HZ, Jiang XG, Chen J (2013a) B6 peptide-modified PEG-PLA nanoparticles for enhanced brain delivery of neuroprotective peptide. Bioconjug Chem 24(6):997–1007PubMedCrossRefGoogle Scholar
  226. Liu ZY, Jiang MY, Kang T, Miao DY, Gu GZ, Song QX, Yao L, Hu QY, Tu YF, Pang ZQ, Chen H, Jiang X, Gao X, Chen J (2013b) Lactoferrin-modified PEG-co-PCL nanoparticles for enhanced brain delivery of NAP peptide following intranasal administration. Biomaterials 34(15):3870–3881PubMedCrossRefGoogle Scholar
  227. Liu FF, Wang WJ, Sang JC, Jia LG, Lu FP (2019) Hydroxylated single-walled carbon nanotubes inhibit Aβ42 fibrillogenesis, disaggregate mature fibrils, and protect against Aβ42-induced cytotoxicity. ACS Chem Neurosci 10(1):588–598PubMedCrossRefGoogle Scholar
  228. Ljubimova JY, Sun T, Mashouf L, Ljubimov AV, Israel LL, Ljubimov VA, Falahatian V, Holler E (2017) Covalent nanodelivery systems for selective imaging and treatment of brain tumors. Adv Drug Deliv Rev 113:177–200PubMedPubMedCentralCrossRefGoogle Scholar
  229. Lopalco A, Cutrignelli A, Denora N, Lopedota A, Franco M, Laquintana V (2018) Transferrin functionalized liposomes loading dopamine HCl: development and permeability studies across an in vitro model of human blood-brain barrier. Nano 8(3):178Google Scholar
  230. Lopez T, Ortiz E, Meza D, Basaldella E, Bokhimi X, Magana C, Sepulveda A, Rodriguez F, Ruiz J (2011) Controlled release of phenytoin for epilepsy treatment from titania and silica based materials. Mater Chem Phys 126(3):922–929CrossRefGoogle Scholar
  231. Lotfabadi A, Hajipour MJ, Derakhshankhah H, Peirovi A, Saffar S, Shams E, Fatemi E, Barzegari E, Sarvari S, Moakedi F, Ferdousi M, Atyabi F, Saboury AA, Dinarvand R (2018) Biomolecular corona dictates Aβ fibrillation process. ACS Chem Neurosci 9(7):1725–1734PubMedCrossRefGoogle Scholar
  232. Loureiro JA, Gomes B, Fricker G, Coelho MAN, Rocha S, Pereira MC (2016) Cellular uptake of PLGA nanoparticles targeted with anti-amyloid and anti-transferrin receptor antibodies for Alzheimer's disease treatment. Colloids Surf B: Biointerfaces 145:8–13PubMedCrossRefGoogle Scholar
  233. Lucas MJ, Keitz BK (2018) Influence of zeolites on amyloid-β aggregation. Langmuir 34(33):9789–9797PubMedCrossRefGoogle Scholar
  234. Luo Q, Lin YX, Yang PP, Wang Y, Qi GB, Qiao ZY, Li BN, Zhang K, Zhang JP, Wang L, Wang H (2018) A self-destructive nanosweeper that captures and clears amyloid β-peptides. Nat Commun 9:1802PubMedPubMedCentralCrossRefGoogle Scholar
  235. Luppi B, Bigucci F, Corace G, Delucca A, Cerchiara T, Sorrenti M, Catenacci L, Di Pietra AM, Zecchi V (2011) Albumin nanoparticles carrying cyclodextrins for nasal delivery of the anti-Alzheimer drug tacrine. Eur J Pharm Sci 44(4):559–565PubMedCrossRefGoogle Scholar
  236. Lyketsos CG, Colenda CC, Beck C, Blank K, Doraiswamy MP, Kalunian DA, Yaffe K (2006) Position statement of the American Association for Geriatric Psychiatry regarding principles of care for patients with dementia resulting from Alzheimer disease. Am J Geriatr Psychiatry 14:561–572PubMedCrossRefGoogle Scholar
  237. Ma MM, Gao N, Sun YH, Du XB, Ren JS, Qu XG (2018) Redox-activated near-infrared-responsive polyoxometalates used for photothermal treatment of Alzheimer's disease. Adv Healthc Mater 7(20):1800320CrossRefGoogle Scholar
  238. Mackenzie IR, Neumann M, Bigio EH, Cairns NJ, Alafuzoff I, Kril J, Kovacs GG, Ghetti B, Halliday G, Holm IE, Ince PG, Kamphorst W, Revesz T, Rozemuller AJ, Kumar-Singh S, Akiyama H, Baborie A, Spina S, Dickson DW, Trojanowski JQ, Mann DM (2010) Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol 119:1–4PubMedCrossRefGoogle Scholar
  239. Majerova P, Garruto RM, Kovac A (2018) Cerebrovascular inflammation is associated with tau pathology in Guam parkinsonism dementia. J Neural Transm 125:1013–1025PubMedCrossRefGoogle Scholar
  240. Mancini S, Minniti S, Gregori M, Sancini G, Cagnotto A, Couraud PO, Ordonez-Gutierrez L, Wandosell F, Salmona M, Re F (2016) The hunt for brain Aβ oligomers by peripherally circulating multi-functional nanoparticles: potential therapeutic approach for Alzheimer disease. Nanomedicine 12(1):43–52 PubMedCrossRefGoogle Scholar
  241. Mandal M, Mukherjee A, Gupta S (2018) New vista in Parkinson's disease treatment: magic of nanotechnology. J Indian Chem Soc 95(8):997–1002Google Scholar
  242. Mao ZL, Xu B, Ji XL, Zhou K, Zhang XM, Chen MJ, Han XM, Tang QS, Wang XR, Xia YK (2015) Titanium dioxide nanoparticles alter cellular morphology via disturbing the microtubule dynamics. Nanoscale 7(18):8466–8475PubMedCrossRefGoogle Scholar
  243. Masserini M (2013) Nanoparticles for brain drug delivery. ISRN Biochemistry 2013:238428PubMedPubMedCentralCrossRefGoogle Scholar
  244. Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL (2015) Alzheimer's disease. Nat Rev Dis Primers 1:15056PubMedCrossRefGoogle Scholar
  245. Mathew A, Fukuda T, Nagaoka Y, Hasumura T, Morimoto H, Yoshida Y, Maekawa T, Venugopal K, Kumar DS (2012) Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer's disease. PLoS One 7(3):e32616PubMedPubMedCentralCrossRefGoogle Scholar
  246. Mathew G, Dey P, Das R, Chowdhury SD, Das MP, Veluswamy P, Neppolian B, Das J (2018) Direct electrochemical reduction of hematite decorated graphene oxide (α-Fe2O3@erGO) nanocomposite for selective detection of Parkinson's disease biomarker. Biosens Bioelectron 115:53–60PubMedCrossRefGoogle Scholar
  247. Mazibuko Z, Choonara YE, Kumar P, Du Toit LC, Modi G, Naidoo D, Pillay V (2015) A review of the potential role of nano-enabled drug delivery technologies in amyotrophic lateral sclerosis: lessons learned from other neurodegenerative disorders. J Pharm Sci 104(4):1213–1229PubMedCrossRefGoogle Scholar
  248. McKee AC, Stern RA, Nowinski CJ, Stein TD, Alvarez VE, Daneshvar DH, Lee HS, Wojtowicz SM, Hall G, Baugh CM, Riley DO, Kubilus CA, Cormier KA, Jacobs MA, Martin BR, Abraham CR, Ikezu T, Reichard RR, Wolozin BL, Budson AE, Goldstein LE, Kowall NW, Cantu RC (2013) The spectrum of disease in chronic traumatic encephalopathy. Brain 136:43–64PubMedCrossRefGoogle Scholar
  249. Md S, Kumar M, Baboota S, Sahni JK, Ali J (2012) Preparation, characterization and evaluation of bromocriptine loaded chitosan nanoparticles for intranasal delivery. Sci Adv Mater 4(9):949–960CrossRefGoogle Scholar
  250. Md S, Khan RA, Mustafa G, Chuttani K, Baboota S, Sahni JK, Ali J (2013) Pharmacodynamic, pharmacokinetic and scintigraphy study in mice model. Eur J Pharm Sci 48(3):393–405PubMedCrossRefGoogle Scholar
  251. Md S, Haque S, Fazil M, Kumar M, Baboota S, Sahni JK, Ali J (2014) Optimised nanoformulation of bromocriptine for direct nose-to-brain delivery: biodistribution, pharmacokinetic and dopamine estimation by ultra-HPLC/mass spectrometry method. Expert Opin Drug Deliv 11(6):827–842PubMedCrossRefGoogle Scholar
  252. Md S, Bhattmisra SK, Zeeshan F, Shahzad N, Mujtaba MA, Meka VS, Radhakrishnan A, Kesharwani P, Baboota S, Ali J (2018) Nano-carrier enabled drug delivery systems for nose to brain targeting for the treatment of neurodegenerative disorders. J Drug Deliv Sci Technol 43:295–310CrossRefGoogle Scholar
  253. Mehdizadeh P, Fesharaki SSH, Nouri M, Ale-Ebrahim M, Akhtari K, Shahpasand K, Saboury AA, Falahati M (2019) Tau folding and cytotoxicity of neuroblastoma cells in the presence of manganese oxide nanoparticles: biophysical, molecular dynamics, cellular, and molecular studies. Int J Biol Macromol 125:674–682PubMedCrossRefGoogle Scholar
  254. Mehta D, Jackson R, Paul G, Ji S, Sabbagh M (2017) Why do trials for Alzheimer’s disease drugs keep failing? A discontinued drug perspective for 2010–2015. Expert Opin Investig Drugs 26(6):735–739PubMedPubMedCentralCrossRefGoogle Scholar
  255. Meng FF, Asghar S, Gao SY, Su ZG, Song J, Huo MR, Meng WD, Ping QN, Xiao YY (2015) A novel LDL-mimic nanocarrier for the targeted delivery of curcumin into the brain to treat Alzheimer's disease. Colloids Surf B: Biointerfaces 134:88–97PubMedCrossRefGoogle Scholar
  256. Menon PK, Muresanu DF, Sharma A, Mössler H, Sharma HS (2012) Cerebrolysin, a mixture of neurotrophic factors induces marked neuroprotection in spinal cord injury following intoxication of engineered nanoparticles from metals. CNS Neurol Disord Drug Targets 11(1):40–49PubMedCrossRefGoogle Scholar
  257. Milani MDM (2013) Citicoline as coadiuvant treatment of cognitive impairment in chronic degenerative central nervous system diseases and in ischemic stroke: a review of available data. Online J Med Med Sci Res 2(2):13–18Google Scholar
  258. Miri AL, Hosni AP, Gomes JC, Mainardes RM, Khalil NM, Del JV, Marcano RG, da Silva Pereira MC, Kerppers II (2019) Study of the effects of L-tryptophane nanoparticles on motor behavior in Alzheimer's experimental models. CNS Neurol Disord Drug Targets 18(1):44–51CrossRefGoogle Scholar
  259. Mishra AD, Patel CN, Shah DR (2013) Formulation and optimization of ethosomes for transdermal delivery of ropinirole hydrochloride. Curr Drug Deliv 10(5):500–516PubMedCrossRefGoogle Scholar
  260. Misra AR, Ghandi NI, Bajaj MR, Shah BB, Samant RS, Jamil ASP (2010) Liposomal citicoline injection WO 2010092597:A2Google Scholar
  261. Misra S, Chopra K, Sinha VR, Medhi B (2016) Galantamine-loaded solid-lipid nanoparticles for enhanced brain delivery: preparation, characterization, in vitro and in vivo evaluations. Drug Deliv 23(4):1434–1443PubMedCrossRefGoogle Scholar
  262. Mittal D, Md S, Hasan Q, Fazil M, Ali A, Baboota S, Ali J (2016) Brain targeted nanoparticulate drug delivery system of rasagiline via intranasal route. Drug Deliv 23(1):130–139PubMedCrossRefGoogle Scholar
  263. Mittapelly N, Rachumallu R, Pandey G, Sharma S, Arya A, Bhatta RS, Mishra PR (2016) Investigation of salt formation between memantine and pamoic acid: its exploitation in nanocrystalline form as long acting injection. Eur J Pharm Biopharm 101:62–71PubMedCrossRefGoogle Scholar
  264. Mo Y, Barnett ME, Takemoto D, Davidson H, Kompella UB (2007) Human serum albumin nanoparticles for efficient delivery of Cu, Zn superoxide dismutase gene. Mol Vis 13:746–757Google Scholar
  265. Mori H, Kondo J, Ihara Y (1987) Ubiquitin is a component of paired helical filaments in Alzheimer's disease. Science 235:1641–1644PubMedCrossRefGoogle Scholar
  266. Mudedla SK, Murugan NA, Agren H (2018) Free energy landscape for alpha-helix to beta-sheet interconversion in small amyloid forming peptide under nanoconfinement. J Phys Chem B 122(42):9654–9664PubMedCrossRefGoogle Scholar
  267. Mudedla SK, Murugan NA, Subramanian V, Agren H (2019) Destabilization of amyloid fibrils on interaction with MoS2-based nanomaterials. RSC Adv 9(3):1613–1624CrossRefGoogle Scholar
  268. Mufamadi MS, Choonara YE, Kumar P, Modi G, Naidoo D, van Vuuren S, Ndesendo VMK, du Toit LC, Iyuke SE, Pillay V (2013) Ligand-functionalized nanoliposomes for targeted delivery of galantamine. Int J Pharm 448(1):267–281PubMedCrossRefGoogle Scholar
  269. Muntimadugu E, Dhommati R, Jain A, Challa VGS, Shaheen M, Khan W (2016) Intranasal delivery of nanoparticle encapsulated tarenflurbil: a potential brain targeting strategy for Alzheimer's disease. Eur J Pharm Sci 92:224–234PubMedCrossRefGoogle Scholar
  270. Muronetz V, Asryants R, Semenyuk P, Schmalhausen E, Saso L (2014) Hydrophobic plant antioxidants. Preparation of nanoparticles and their application for prevention of neurodegenerative diseases. Review and experimental data. Curr Top Med Chem 14(22):2520–2528PubMedCrossRefGoogle Scholar
  271. Murray ME, Lowe VJ, Graff-Radford NR, Liesinger AM, Cannon A, Przybelski SA, Rawal B, Parisi JE, Petersen RC, Kantarci K, Ross OA, Duara R, Knopman DS, Jack CR, Dickson DW (2015) Clinicopathologic and 11C-Pittsburgh compound B implications of Thal amyloid phase across the Alzheimer’s disease spectrum. Brain 138(Pt 5):1370–1381PubMedPubMedCentralCrossRefGoogle Scholar
  272. Mustafa G, Baboota S, Ali J, Kumar N, Singh T, Bhatnagar A, Ahuja A (2012a) Effect of homogenization on the fate of true nanoemulsion in brain translocation: a gamma scintigraphic evaluation. Sci Adv Mater 4(7):739–748CrossRefGoogle Scholar
  273. Mustafa G, Baboota S, Ahuja A, Ali J (2012b) Formulation development of chitosan coated intra nasal ropinirole nanoemulsion for better management option of Parkinson: An in vitro ex vivo evaluation. Curr Nanosci 8(3):348–360CrossRefGoogle Scholar
  274. Mustafa G, Ahuja A, Al Rohaimi AH, Muslim S, Hassan AA, Baboota S, Ali J (2015) Nano-ropinirole for the management of parkinsonism: blood-brain pharmacokinetics and carrier localization. Expert Rev Neurother 15(6):695–710PubMedCrossRefGoogle Scholar
  275. Nagy ZK, Nyul K, Wagner I, Molnar K, Marosi G (2010) Electrospun water soluble polymer mat for ultrafast release of donepezil HCl. Express Polym Lett 4(12):763–772CrossRefGoogle Scholar
  276. Nair KGS, Ramaiyan V, Sukumaran SK (2018) Enhancement of drug permeability across blood brain barrier using nanoparticles in meningitis. Inflammopharmacology 26(3):675–684PubMedCrossRefGoogle Scholar
  277. Nasr SH, Kouyoumdjian H, Mallett C, Ramadan S, Zhu DC, Shapiro EM, Huang XF (2018) Detection of β-amyloid by sialic acid coated bovine serum albumin magnetic nanoparticles in a mouse model of Alzheimer's disease. Small 14(3):1701828CrossRefGoogle Scholar
  278. Nelson PT, Schmitt FA, Lin Y, Abner EL, Jicha GA, Patel E, Thomason PC, Neltner JH, Smith CD, Santacruz KS, Sonnen JA, Poon LW, Gearing M, Green RC, Woodard JL, Van Eldik LJ, Kryscio RJ (2011) Hippocampal sclerosis in advanced age: clinical and pathological features. Brain 134:1506–1518PubMedPubMedCentralCrossRefGoogle Scholar
  279. Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns NJ, Castellani RJ, Crain BJ, Davies P, Del Tredici K, Duyckaerts C, Frosch MP, Haroutunian V, Hof PR, Hulette CM, Hyman BT, Iwatsubo T, Jellinger KA, Jicha GA, Kövari E, Kukull WA, Leverenz JB, Love S, Mackenzie IR, Mann DM, Masliah E, McKee AC, Montine TJ, Morris JC, Schneider JA, Sonnen JA, Thal DR, Trojanowski JQ, Troncoso JC, Wisniewski T, Woltjer RL, Beach TG (2012) Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol 71:362–381PubMedPubMedCentralCrossRefGoogle Scholar
  280. Nelson PT, Dickson DW, Trojanowski JQ, Jack CR, Boyle PA, Arfanakis K, Rademakers R, Alafuzoff I, Attems J, Brayne C, Coyle-Gilchrist ITS, Chui HC, Fardo DW, Flanagan ME, Halliday G, Hokkanen SRK, Hunter S, Jicha GA, Katsumata Y, Kawas CH, Keene CD, Kovacs GG, Kukull WA, Levey AI, Makkinejad N, Montine TJ, Murayama S, Murray ME, Nag S, Rissman RA, Seeley WW, Sperling RA, White ICL, Yu L, Schneider JA (2019) Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain 142(6):1503–1527PubMedPubMedCentralCrossRefGoogle Scholar
  281. Ngwuluka NC, Choonara YE, Kumar P, du Toit LC, Modi G, Pillay V (2015) An optimized gastroretentive nanosystem for the delivery of levodopa. Int J Pharm 494(1):49–65PubMedCrossRefGoogle Scholar
  282. Nicholas J, Wiley AB, Madhankumar RM, Mitchell EB, Neely ER, Gregory L, Douds ZS, James RC (2012) Lipopolysaccharide modified liposomes for amyotropic lateral sclerosis therapy: efficacy in SOD1 mouse model. Advances in Nanoparticles 1(3):44–53CrossRefGoogle Scholar
  283. Nouri M, Esfahanizadeh N, Shahpar MG, Attar F, Sartipnia N, Akhtari K, Saboury AA, Falahati M (2018) Cobalt oxide nanoparticles mediate tau denaturation and cytotoxicity against PC-12 cell line. Int J Biol Macromol 118.(Pt B:1763–1772PubMedCrossRefGoogle Scholar
  284. Novák M (1994) Truncated tau protein as a new marker for Alzheimer's disease. Acta Virol 38:173–189PubMedGoogle Scholar
  285. Novák M, Wischik CM, Edwards P, Pannell R, Milstein C (1989) Characterisation of the first monoclonal antibody against the pronase resistant core of the Alzheimer PHF. Prog Clin Biol Res 317:755–761PubMedGoogle Scholar
  286. Novák M, Jakes R, Edwards PC, Milstein C, Wischik CM (1991) Difference between the tau protein of Alzheimer paired helical filament core and normal tau revealed by epitope analysis of monoclonal antibodies 423 and 7.51. Proc Natl Acad Sci USA 88:5837–5841PubMedCrossRefGoogle Scholar
  287. Novák M, Kabat J, Wischik CM (1993) Molecular characterization of the minimal protease resistant tau unit of the Alzheimer's disease paired helical filament. EMBO J 12:365–370PubMedPubMedCentralCrossRefGoogle Scholar
  288. Novák P, Prcina M, Kontsekova E (2011) Tauons and prions: infamous cousins? J Alzheimers Dis 26:413–430PubMedCrossRefGoogle Scholar
  289. Novák P, Kontsekova E, Zilka N, Novák M (2018a) Ten years of tau-targeted immunotherapy: the path walked and the roads ahead. Front Neurosci 12:798PubMedPubMedCentralCrossRefGoogle Scholar
  290. Novák P, Schmidt R, Kontsekova E, Kovacech B, Smolek T, Katina S, Fialova L, Prcina M, Parrak V, Dal-Bianco P, Brunner M, Staffen W, Rainer M, Ondrus M, Ropele S, Smisek M, Sivak R, Zilka N, Winblad B, Novák M (2018b) FUNDAMANT: An interventional 72-week phase 1 follow-up study of AADvac1, an active immunotherapy against tau protein pathology in Alzheimer's disease. Alzheimers Res Ther 10:108PubMedPubMedCentralCrossRefGoogle Scholar
  291. Nunes A, Al-Jamal KT, Kostarelos K (2012) Therapeutics, imaging and toxicity of nanomaterials in the central nervous system. J Control Release 161(2):290–306PubMedCrossRefGoogle Scholar
  292. Oh J, Lee JS, Jun J, Kim SG, Jang J (2017) Ultrasensitive and selective organic FET-type nonenzymatic dopamine sensor based on platinum nanoparticles-decorated reduced graphene oxide. ACS Appl Mater Interfaces 9(45):39526–39533PubMedCrossRefGoogle Scholar
  293. Ojha S, Kumar B (2018) A review on nanotechnology based innovations in diagnosis and treatment of multiple sclerosis. Journal of Cellular Immunotherapy 4(2):56–64CrossRefGoogle Scholar
  294. Ozkizilcik A, Sharma A, Muresanu DF, Lafuente JV, Tian ZR, Patnaik R, Moessler H, Sharma HS (2018a) Timed release of cerebrolysin using drug-loaded titanate nanospheres reduces brain pathology and improves behavioral functions in Parkinson's disease. Mol Neurobiol 55(1):359–369PubMedCrossRefGoogle Scholar
  295. Ozkizilcik A, Williams R, Tian ZR, Muresanu DF, Sharma A, Sharma HS (2018b) Synthesis of biocompatible titanate nanofibers for effective delivery of neuroprotective agents. Methods in Molecular Biology – Neurotrophic Factors 1727:433–442CrossRefGoogle Scholar
  296. Pagar KP, Sardar SM, Vavia PR (2014) Novel l-lactide-depsipeptide polymeric carrier for enhanced brain uptake of rivastigmine in treatment of Alzheimer's disease. J Biomed Nanotechnol 10(3):415–426PubMedCrossRefGoogle Scholar
  297. Pahuja R, Seth K, Shukla A, Shukla RK, Bhatnagar P, Chauhan LKS, Saxena PN, Arun J, Chaudhari BP, Patel DK, Singh SP, Shukla R, Khanna VK, Kumar P, Chaturvedi RK, Gupta KC (2015) Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats. ACS Nano 9(5):4850–4871PubMedCrossRefGoogle Scholar
  298. Paka GD, Doggui S, Zaghmi A, Safar R, Dao L, Reisch A, Klymchenko A, Roullin VG, Joubert O, Ramassamy C (2016) Neuronal uptake and neuroprotective properties of curcumin-loaded nanoparticles on SK-N-SH cell line: role of poly(lactide-co-glycolide) polymeric matrix composition. Mol Pharm 13(2):391–403CrossRefGoogle Scholar
  299. Palle S, Neerati P (2018) Improved neuroprotective effect of resveratrol nanoparticles as evinced by abrogation of rotenone-induced behavioral deficits and oxidative and mitochondrial dysfunctions in rat model of Parkinson's disease. Naunyn Schmiedeberg's Arch Pharmacol 391(4):445–453CrossRefGoogle Scholar
  300. Pandey PK, Sharma AK, Rani S, Mishra G, Kandasamy G, Patra AK, Rana M, Sharma AK, Yadav AK, Gupta U (2018) MCM-41 nanoparticles for brain delivery: better choline-esterase and amyloid formation inhibition with improved kinetics. ACS Biomater Sci Eng 4(8):2860–2869CrossRefGoogle Scholar
  301. Pansieri J, Gerstenmayer M, Lux F, Meriaux S, Tillement O, Forge V, Larrat B, Marquette C (2018) Magnetic nanoparticles applications for amyloidosis study and detection: a review. Nano 8(9):740Google Scholar
  302. Panza F, Lozupone M, Logroscino G, Imbimbo BP (2019) A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat Rev Neurol 15:73–88PubMedCrossRefGoogle Scholar
  303. Papadimitriou S, Bikiaris D, Avgoustakis K, Karavas E, Georgarakis M (2008) Chitosan nanoparticles loaded with dorzolamide and pramipexole. Carbohydr Polym 73(1):44–54CrossRefGoogle Scholar
  304. Parikh A, Kathawala K, Li JT, Chen C, Shan ZN, Cao X, Wang YJ, Garg S, Zhou XF (2018) Self-nanomicellizing solid dispersion of edaravone: part II: in vivo assessment of efficacy against behavior deficits and safety in Alzheimer's disease model. Drug Des Devel Ther 12:2111–2128PubMedPubMedCentralCrossRefGoogle Scholar
  305. Park JK, Bin Choy Y, Oh JM, Kim JY, Hwang SJ, Choy JH (2008) Controlled release of donepezil intercalated in smectite clays. Int J Pharm 359(1–2):198–204PubMedCrossRefGoogle Scholar
  306. Park DJ, Choi JH, Lee WJ, Um SH, Oh BK (2017) Selective electrochemical detection of dopamine using reduced graphene oxide sheets-gold nanoparticles modified electrode. J Nanosci Nanotechnol 17(11):8012–8018CrossRefGoogle Scholar
  307. Parthipan AK, Gupta N, Pandey K, Sharma B, Jacob J, Saha S (2019) One-step fabrication of bicompartmental microparticles as a dual drug delivery system for Parkinson's disease management. J Mater Sci 54(1):730–744CrossRefGoogle Scholar
  308. Patel P, Pol A, More S, Kalaria DR, Kalia YN, Patravale VB (2014) Colloidal soft nanocarrier for transdermal delivery of dopamine agonist: ex vivo and in vivo evaluation. J Biomed Nanotechnol 10(11):3291–3303PubMedCrossRefGoogle Scholar
  309. Pentak D, Kozik V, Bąk A, Dybał P, Sochanik A, Jampílek J (2016) Methotrexate and cytarabine – loaded nanocarriers for multidrug cancer therapy. Spectroscopic study. Molecules 21(12):1689PubMedCentralCrossRefPubMedGoogle Scholar
  310. Perera VS, Liu HJ, Wang ZQ, Huang SPD (2013) Cell-permeable Au@ZnMoS4 core-shell nanoparticles: toward a novel cellular copper detoxifying drug for Wilson's disease. Chem Mater 25(23):4703–4709PubMedPubMedCentralCrossRefGoogle Scholar
  311. Pisárčik M, Jampílek J, Devínsky F, Drábiková J, Tkacz J, Opravil T (2016) Gemini surfactants with polymethylene spacer: Supramolecular structures at solid surface and aggregation in aqueous solution. J Surfactant Deterg 19(3):477–486CrossRefGoogle Scholar
  312. Pisárčik M, Jampílek J, Lukáč M, Horáková R, Devínsky F, Bukovský M, Kalina M, Tkacz J, Opravil T (2017) Silver nanoparticles stabilised by cationic gemini surfactants with variable spacer length. Molecules 22(10):1794PubMedCentralCrossRefPubMedGoogle Scholar
  313. Pisárčik M, Lukáč M, Jampílek J, Bilka F, Bilková A, Pašková Ľ, Devínsky F, Horáková R, Opravil T (2018) Silver nanoparticles stabilised with cationic single-chain surfactants. Structure-physical properties-biological activity relationship study. J Mol Liq 272:60–72CrossRefGoogle Scholar
  314. Plissonneau M, Pansieri J, Heinrich-Balard L, Morfin JF, Stransky-Heilkron N, Rivory P, Mowat P, Dumoulin M, Cohen R, Allémann É, Tόth É, Saraiva MJ, Louis C, Tillement O, Forge V, Lux F, Marquette C (2016) Gd-nanoparticles functionalization with specific peptides for ß-amyloid plaques targeting. J Nanobiotechnol 14(1):60CrossRefGoogle Scholar
  315. Prades R, Guerrero S, Araya E, Molina C, Salas E, Zurita E, Selva J, Egea G, Lopez-Iglesias C, Teixido M, Kogan MJ, Giralt E (2012) Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials 33(29):7194–7205PubMedCrossRefGoogle Scholar
  316. Prasad RS, Yandrapu SK, Manavalan R (2010) Lipid solid dispersions for the aqueous solubility and bioavailability enhancement of entacapone. Asian J Chem 22:4549–4558Google Scholar
  317. Prusiner SB (1998) Prions. Proc Natl Acad Sci U S A 95:13363–13383PubMedPubMedCentralCrossRefGoogle Scholar
  318. Rahmani S, Mogharizadeh L, Attar F, Rezayat SM, Mousavi SE, Falahati M (2018) Probing the interaction of silver nanoparticles with tau protein and neuroblastoma cell line as nervous system models. J Biomol Struct Dyn 36(15):4057–4071PubMedCrossRefGoogle Scholar
  319. Raj R, Wairkar S, Sridhar V, Gaud R (2018) Development, characterization and in vivo anti-Parkinson activity. Int J Biol Macromol 109:27–35PubMedCrossRefGoogle Scholar
  320. Rajput AP, Butani SB (2018) Nose to brain delivery of donepezil. Asian J Pharm 12(4):293–302Google Scholar
  321. Rajput A, Bariya A, Allam A, Othman S, Butani SB (2018) In situ nanostructured hydrogel of resveratrol for brain targeting: in vitro-in vivo characterization. Drug Deliv Transl Res 8(5):1460–1470PubMedCrossRefGoogle Scholar
  322. Rakotoarisoa M, Angelova A (2018) Amphiphilic nanocarrier systems for curcumin delivery in neurodegenerative disorders. Medicines 5(4):126PubMedCentralCrossRefPubMedGoogle Scholar
  323. Ramachandran S, Thangarajan S (2016) A novel therapeutic application of solid lipid nanoparticles encapsulated thymoquinone (TQ-SLNs) on 3-nitroproponic acid induced Huntington's disease-like symptoms in Wistar rats. Chem Biol Interact 256:25–36PubMedCrossRefGoogle Scholar
  324. Ramachandran S, Thangarajan S (2018) Thymoquinone loaded solid lipid nanoparticles counteracts 3-nitropropionic acid induced motor impairments and neuroinflammation in rat model of Huntington's disease. Metab Brain Dis 33(5):1459–1470PubMedCrossRefGoogle Scholar
  325. Rao SV, Meherunnisa M, Padmalatha K (2018) Formulation, characterisation and in vitro evaluation of novel ionically cross linked casein nanoparticles for memantine hydrochloride delivery. Int J Pharm Sci Res 9(8):3307–3316Google Scholar
  326. Ravani L, Sarpietro MG, Esposito E, Di Stefano A, Sozio P, Calcagno M, Drechsler M, Contado C, Longo F, Giuffrida MC, Castelli F, Morari M, Cortesi R (2015) Lipid nanocarriers containing a levodopa prodrug with potential antiparkinsonian activity. Mater Sci Eng C Mater Biol Appl 48:294–300PubMedCrossRefGoogle Scholar
  327. Ray S, Sinha P, Laha B, Maiti S, Bhattacharyya UK, Nayak AK (2018) Polysorbate 80 coated crosslinked chitosan nanoparticles of ropinirole hydrochloride for brain targeting. J Drug Deliv Sci Technol 48:21–29CrossRefGoogle Scholar
  328. Reddy JS, Venkateswarlu V, Koning GA (2006) Radioprotective effect of transferrin targeted citicoline liposomes. J Drug Target 14(1):13–19CrossRefGoogle Scholar
  329. Requejo C, Ruiz-Ortega JA, Cepeda H, Sharma A, Sharma HS, Ozkizilcik A, Tian R, Moessler H, Ugedo L, Lafuente JV (2018) Neuroprotective effects in a preclinical rat model of Parkinson's disease. Mol Neurobiol 55(1):286–299PubMedCrossRefGoogle Scholar
  330. Respondek G, Hoglinger GU (2016) The phenotypic spectrum of progressive supranuclear palsy. Parkinsonism Relat Disord 22(Supl.1):S34–S36PubMedCrossRefGoogle Scholar
  331. Rissman RA, Poon WW, Blurton-Jones M, Oddo S, Torp R, Vitek MP, LaFerla FM, Rohn TT, Cotman CW (2004) Caspase-cleavage of tau is an early event in Alzheimer disease tangle pathology. J Clin Investig 114:121–130PubMedCrossRefGoogle Scholar
  332. Roshanfekmahzomi Z, Badpa P, Esfandiari B, Taheri S, Nouri M, Akhtari K, Shahpasand K, Falahati M (2019) Silica nanoparticles induce conformational changes of tau protein and oxidative stress and apoptosis in neuroblastoma cell line. Int J Biol Macromol 124:1312–1320CrossRefGoogle Scholar
  333. Ross AM, Rahmani S, Prieskorn DM, Dishman AF, Miller JM, Lahann J, Altschuler RA (2016) Persistence, distribution, and impact of distinctly segmented microparticles on cochlear health following in vivo infusion. J Biomed Mater Res A 104(6):1510–1522PubMedPubMedCentralCrossRefGoogle Scholar
  334. Ross C, Taylor M, Fullwood N, Allsop D (2018) Liposome delivery systems for the treatment of Alzheimer's disease. Int J Nanomedicine 13:8507–8522PubMedPubMedCentralCrossRefGoogle Scholar
  335. Rukmangathen R, Yallamalli IM, Yalavarthi PR (2018) Biopharmaceutical potential of selegiline loaded chitosan nanoparticles in the management of Parkinson's disease. Curr Drug Discov Technol,. in press.  https://doi.org/10.2174/1570163815666180418144019
  336. Ruozi B, Belletti D, Pederzoli F, Veratti P, Forni F, Vandelli MA, Tosi G (2014) Nanotechnology and Alzheimer's disease: what has been done and what to do. Curr Med Chem 21(36):4169–4185PubMedCrossRefGoogle Scholar
  337. Ruozi B, Belletti D, Sharma HS, Sharma A, Muresanu DF, Moessler H, Forni F, Vandelli MA, Tosi G (2015) PLGA nanoparticles loaded cerebrolysin: studies on their preparation and investigation of the effect of storage and serum stability with reference to traumatic brain injury. Mol Neurobiol 52(2):899–912PubMedCrossRefGoogle Scholar
  338. Rzigalinski BA, Carfagna CS, Ehrich M (2017) Cerium oxide nanoparticles in neuroprotection and considerations for efficacy and safety. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9(4):e1444CrossRefGoogle Scholar
  339. Sadowska-Bartosz I, Bartosz G (2018) Redox nanoparticles: synthesis, properties and perspectives of use for treatment of neurodegenerative diseases. J Nanobiotechnol 16:87CrossRefGoogle Scholar
  340. Sanati AL, Faridbod F, Ganjali MR (2017) Synergic effect of graphene quantum dots and room temperature ionic liquid for the fabrication of highly sensitive voltammetric sensor for levodopa determination in the presence of serotonin. J Mol Liq 241:316–320CrossRefGoogle Scholar
  341. Sanchez-Lopez E, Ettcheto M, Egea MA, Espina M, Cano A, Cristina CA, Camins A, Carmona N, Silva AM, Souto EB, Garcia ML (2018) Memantine loaded PLGA PEGylated nanoparticles for Alzheimer's disease: in vitro and in vivo characterization. J Nanobiotechnol 16:32CrossRefGoogle Scholar
  342. Sancini G, Dal Magro R, Ornaghi F, Balducci C, Forloni G, Gobbi M, Salmona M, Re F (2016) Pulmonary administration of functionalized nanoparticles significantly reduces β-amyloid in the brain of an Alzheimer's disease murine model. Nano Res 9(7):2190–2201CrossRefGoogle Scholar
  343. Sandhir R, Yadav A, Mehrotra A, Sunkaria A, Singh A, Sharma S (2014) Curcumin nanoparticles attenuate neurochemical and neurobehavioral deficits in experimental model of Huntington's disease. NeuroMolecular Med 16(1):106–118PubMedCrossRefGoogle Scholar
  344. Sangubotla R, Kim J (2018) Recent trends in analytical approaches for detecting neurotransmitters in Alzheimer's disease. Trends Anal Chem 105:240–250CrossRefGoogle Scholar
  345. Sardjono RE, Khoerunnisa F, Musthopa I, Akasum NSMM, Rachmawati R (2018) Synthesize, characterization, and anti-Parkinson activity of silver-Indonesian velvet beans (Mucuna pruriens) seed extract nanoparticles (AgMPn). J Phys Conf Ser 1013:012195CrossRefGoogle Scholar
  346. Satheesh MNV (2014) Carbidopa bio-nanoparticles for brain targeting via ear. IN Patent 201203451 I1Google Scholar
  347. Sathya S, Shanmuganathan B, Manirathinam G, Ruckmani K, Devi KP (2018a) α-Bisabolol loaded solid lipid nanoparticles attenuates Aβ aggregation and protects Neuro2a cells from Aβ induced neurotoxicity. J Mol Liq 264:431–441CrossRefGoogle Scholar
  348. Sathya S, Shanmuganathan B, Saranya S, Vaidevi S, Ruckmani K, Devi KP (2018b) Phytol-loaded PLGA nanoparticle as a modulator of Alzheimer's toxic Aβ peptide aggregation and fibrillation associated with impaired neuronal cell function. Artif Cells Nanomed Biotechnol 46(8):1719–1730PubMedGoogle Scholar
  349. Schlich M, Longhena F, Faustini G, O'Driscoll CM, Sinico C, Fadda AM, Bellucci A, Lai F (2017) Anionic liposomes for small interfering ribonucleic acid (siRNA) delivery to primary neuronal cells: evaluation of alpha-synuclein knockdown efficacy. Nano Res 10(10):3496–3508CrossRefGoogle Scholar
  350. Schulz JB, Hausmann L, Hardy J (2016) 199 years of Parkinson disease - what have we learned and what is the path to the future. J Neurochem 139(Suppl. 1):3–7PubMedCrossRefGoogle Scholar
  351. Scialabba C, Rocco F, Licciardi M, Pitarresi G, Ceruti M, Giammona G (2012) Amphiphilic polyaspartamide copolymer-based micelles for rivastigmine delivery to neuronal cells. Drug Deliv 19(6):307–316PubMedCrossRefGoogle Scholar
  352. Sevcik J, Skrabana R, Dvorsky R, Csokova N, Iqbal K, Novák M (2007) X-ray structure of the PHF core C-terminus: insight into the folding of the intrinsically disordered protein tau in Alzheimer's disease. FEBS Lett 581:5872–5878PubMedCrossRefGoogle Scholar
  353. Shah B, Khunt D, Bhatt H, Misra M, Padh H (2015) Application of quality by design approach for intranasal delivery of rivastigmine loaded solid lipid nanoparticles: effect on formulation and characterization parameters. Eur J Pharm Sci 78:54–66PubMedCrossRefGoogle Scholar
  354. Shan L, Tao EX, Meng QH, Hou WX, Liu K, Shang HC, Tang JB, Zhang WF (2016) Formulation, optimization, and pharmacodynamic evaluation of chitosan/phospholipid/β-cyclodextrin microspheres. Drug Des Devel Ther 10:417–429PubMedPubMedCentralCrossRefGoogle Scholar
  355. Shao XR, Ma WJ, Xie XP, Li QS, Lin SY, Zhang T, Lin YF (2018) Neuroprotective effect of tetrahedral DNA nanostructures in a cell model of Alzheimer's disease. ACS Appl Mater Interfaces 10(28):23682–23692PubMedCrossRefGoogle Scholar
  356. Shariati B, Yektadoost E, Behzadi E, Azmoodeh E, Attar F, Sari S, Akhtari K, Falahati M (2018) Interaction of silica nanoparticles with tau proteins and PC12 cells: colloidal stability, thermodynamic, docking, and cellular studies. Int J Biol Macromol 118(Pt B):1963–1973PubMedCrossRefGoogle Scholar
  357. Sharma S, Lohan S, Murthy RSR (2014) Formulation and characterization of intranasal mucoadhesive nanoparticulates and thermo-reversible gel of levodopa for brain delivery. Drug Dev Ind Pharm 40(7):869–878CrossRefGoogle Scholar
  358. Shi YB, Liu QY, Yuan W, Xue M, Feng W, Li FY (2019) Dye-assembled upconversion nanocomposite for luminescence ratiometric in vivo bioimaging of copper ions. ACS Appl Mater Interfaces 11(1):430–436PubMedCrossRefGoogle Scholar
  359. Shin JW, Kim KJ, Yoon J, Jo J, El-Said WA, Choi JW (2017) Silver nanoparticle modified electrode covered by graphene oxide for the enhanced electrochemical detection of dopamine. Sensors 17(12):2771CrossRefGoogle Scholar
  360. Shui BQ, Tao D, Florea A, Cheng J, Zhao Q, Gu YY, Li W, Jaffrezic-Renault N, Mei Y, Guo ZZ (2018a) Biosensors for Alzheimer's disease biomarker detection: a review. Biochemie 147:13–24CrossRefGoogle Scholar
  361. Shui BQ, Tao D, Cheng J, Mei Y, Jaffrezic-Renault N, Guo ZZ (2018b) A novel electrochemical aptamer-antibody sandwich assay for the detection of tau-381 in human serum. Analyst 143(15):3549–3554PubMedCrossRefGoogle Scholar
  362. Siddiqi KS, Husen A, Sohrab SS, Yassin MO (2018) Recent status of nanomaterial fabrication and their potential applications in neurological disease management. Nanoscale Res Lett 13:231PubMedPubMedCentralCrossRefGoogle Scholar
  363. Siddique YH, Khan W, Fatima A, Jyoti S, Khanam S, Naz F, Rahul AF, Singh BR, Naqvi AH (2016) Effect of bromocriptine alginate nanocomposite (BANC) on a transgenic Drosophila model of Parkinson's disease. Dis Model Mech 9(1):63–68PubMedPubMedCentralCrossRefGoogle Scholar
  364. Sieben A, Van Langenhove T, Engelborghs S, Martin JJ, Boon P, Cras P, De Deyn PP, Santens P, Van Broeckhoven C, Cruts M (2012) The genetics and neuropathology of frontotemporal lobar degeneration. Acta Neuropathol 124:353–372PubMedPubMedCentralCrossRefGoogle Scholar
  365. Silva AC, Gonzalez-Mira E, Lobo JMS, Amaral MH (2013) Current progresses on nanodelivery systems for the treatment of neuropsychiatric diseases: Alzheimer's and schizophrenia. Curr Pharm Des 19(41):7185–7195PubMedCrossRefGoogle Scholar
  366. Simko M, Mattson MO (2014) Interactions between nanonized materials and the brain. Curr Med Chem 21(37):4200–4214PubMedPubMedCentralCrossRefGoogle Scholar
  367. Singh AV, Khare M, Gade WN, Zamboni P (2012) Theranostic implications of nanotechnology in multiple sclerosis: a future perspective. Autoimmune Diseases 2012:160830PubMedPubMedCentralCrossRefGoogle Scholar
  368. Singh D, Rashid M, Hallan SS, Mehra NK, Prakash A, Mishra N (2016) Pharmacological evaluation of nasal delivery of selegiline hydrochloride-loaded thiolated chitosan nanoparticles for the treatment of depression. Artif Cells Nanomed Biotechnol 44(3):865–877Google Scholar
  369. Singh NA, Bhardwaj V, Ravi C, Ramesh N, Mandal AKA, Khan ZA (2018a) EGCG nanoparticles attenuate aluminum chloride induced neurobehavioral deficits, beta amyloid and tau pathology in a rat model of Alzheimer's disease. Front Aging Neurosci 10:244PubMedPubMedCentralCrossRefGoogle Scholar
  370. Singh NA, Mandal AKA, Khan ZA (2018b) Inhibition of Al(III)-induced Aβ42 fibrillation and reduction of neurotoxicity by epigallocatechin-3-gallate nanoparticles. J Biomed Nanotechnol 14(6):1147–1158PubMedCrossRefGoogle Scholar
  371. Singh V, Deepak RNVK, Sengupta B, Joshi AS, Fan H, Sen P, Thakur AK (2018c) Calmidazolium chloride and its complex with serum albumin prevent huntingtin exon1 aggregation. Mol Pharm 15(8):3356–3368PubMedCrossRefGoogle Scholar
  372. Smith A, Giunta B, Bickford PC, Fountain M, Tan J, Shytle RD (2010) Nanolipidic particles improve the bioavailability and α-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer's disease. Int J Pharm 389(1–2):207–212PubMedPubMedCentralCrossRefGoogle Scholar
  373. Somani S, Robb G, Pickard BS, Dufes C (2015) Enhanced gene expression in the brain following intravenous administration of lactoferrin-bearing polypropylenimine dendriplex. J Control Release 217:235–242PubMedCrossRefGoogle Scholar
  374. Song MH, Sun YX, Luo Y, Zhu YY, Liu YS, Li HY (2018) Exploring the mechanism of inhibition of Au nanoparticles on the aggregation of amyloid-β(16-22) peptides at the atom level by all-atom molecular dynamics. Int J Mol Sci 19(6):1815PubMedCentralCrossRefPubMedGoogle Scholar
  375. Spires-Jones TL, Attems J, Thal DR (2017) Interactions of pathological proteins in neurodegenerative diseases. Acta Neuropathol 134:187–205PubMedPubMedCentralCrossRefGoogle Scholar
  376. Sridhar V, Gaud R, Bajaj A, Wairkar S (2018) Pharmacokinetics and pharmacodynamics of intranasally administered selegiline nanoparticles with improved brain delivery in Parkinson's disease. Nanomedicine 14(8):2609–2618PubMedCrossRefGoogle Scholar
  377. Stefanova N, Wenning GK (2016) Review: Multiple system atrophy: emerging targets for interventional therapies. Neuropathol Appl Neurobiol 42:20–32PubMedPubMedCentralCrossRefGoogle Scholar
  378. Streit WJ, Xue QS (2014) Human CNS immune senescence and neurodegeneration. Curr Opin Immunol 29:93–96PubMedCrossRefGoogle Scholar
  379. Streit WJ, Braak H, Xue QS, Bechmann I (2009) Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer's disease. Acta Neuropathol 118:475–485PubMedPubMedCentralCrossRefGoogle Scholar
  380. Subczynski WK, Wojas J, Pezeshk V, Pezeshk A (1998) Partitioning and localization of spin-labeled amantadine in lipid bilayers: An EPR study. J Pharm Sci 87(10):1249–1254PubMedCrossRefGoogle Scholar
  381. Suganthy N, Ramkumar VS, Pugazhendhi A, Benelli G, Archunan G (2018) Biogenic synthesis of gold nanoparticles from Terminalia arjuna bark extract: assessment of safety aspects and neuroprotective potential via antioxidant, anticholinesterase, and antiamyloidogenic effects. Environ Sci Pollut Res 25(11):10418–10433PubMedCrossRefGoogle Scholar
  382. Sun M, Gao Y, Guo CY, Cao FL, Song ZM, Xi YW, Yu AH, Li AG, Zhai GX (2010) Enhancement of transport of curcumin to brain in mice by poly(n-butylcyanoacrylate) nanoparticle. J Nanopart Res 12(8):3111–3122CrossRefGoogle Scholar
  383. Sun C, Ding Y, Zhou L, Shi D, Sun L, Webster TJ, Shen Y (2017) Noninvasive nanoparticle strategies for brain tumor targeting. Nanomedicine 13(8):2605–2621PubMedCrossRefGoogle Scholar
  384. Sun J, Xie WJ, Zhu XF, Xu MM, Liu J (2018) Sulfur nanoparticles with novel morphologies coupled with brain-targeting peptides RVG as a new type of inhibitor against metal-induced Aβ aggregation. ACS Chem Neurosci 9(4):749–761PubMedCrossRefGoogle Scholar
  385. Sunena SSK, Mishra DN (2019) Nose to brain delivery of galantamine loaded nanoparticles: in-vivo pharmacodynamic and biochemical study in mice. Curr Drug Deliv 16(1):51–58PubMedCrossRefGoogle Scholar
  386. Tan JM, Foo JB, Fakurazi S, Hussein MZ (2015) Release behaviour and toxicity evaluation of levodopa from carboxylated single-walled carbon nanotubes. Beilstein J Nanotechnol 6:243–253PubMedPubMedCentralCrossRefGoogle Scholar
  387. Thatipamula RP, Palem CR, Gannu R, Mudragada S, Yamsani MR (2011) Formulation and in vitro characterization of domperidone loaded solid lipid nanoparticles and nanostructured lipid carriers. DARU J Pharm Sci 19(1):23–32Google Scholar
  388. Thongrangsalit S, Phaechamud T, Lipipun V, Ritthidej GC (2015) Bromocriptine tablet of self-microemulsifying system adsorbed onto porous carrier to stimulate lipoproteins secretion for brain cellular uptake. Colloids Surf B Biointerfaces 131:162–169PubMedCrossRefGoogle Scholar
  389. Tiwari SK, Agarwal S, Seth B, Yadav A, Nair S, Bhatnagar P, Karmakar M, Kumari M, Chauhan LKS, Patel DK, Srivastava V, Singh D, Gupta SK, Tripathu A, Chaturvedi RK, Gupta KC (2014) Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer's disease model via canonical Wnt/β-catenin pathway. ACS Nano 8(1):76–103PubMedCrossRefGoogle Scholar
  390. Tomasovicova N, Hu PS, Zeng CL, Majorosova J, Zakutanska K, Kopcansky P (2018) Dual size-dependent effect of Fe3O4 magnetic nanoparticles upon interaction with lysozyme amyloid fibrils: disintegration and adsorption. Nano 9(1):37Google Scholar
  391. Torres-Ortega PV, Saludas L, Hanafy AS, Garbayo E, Blanco-Prieto MJ (2019) Micro- and nanotechnology approaches to improve Parkinson's disease therapy. J Control Release 295:201–213PubMedCrossRefGoogle Scholar
  392. Trapani A, Mandracchia D, Tripodo G, Cometa S, Cellamare S, De Giglio E, Klepetsanis P, Antimisiaris SG (2018) Protection of dopamine towards autoxidation reaction by encapsulation into non-coated- or chitosan- or thiolated chitosan-coated-liposomes. Colloids Surf B Biointerfaces 170:11–19PubMedCrossRefGoogle Scholar
  393. Tremmel R, Uhl P, Helm F, Wupperfeld D, Sauter M, Mier W, Stremmel W, Hofhaus G, Fricker G (2016) Delivery of copper-chelating trientine (TETA) to the central nervous system by surface modified liposomes. Int J Pharm 512(1):87–95PubMedCrossRefGoogle Scholar
  394. Truran S, Weissig V, Madine J, Davies HA, Guzman-Villanueva D, Franco DA, Karamanova N, Burciu C, Serrano G, Beach TG, Migrino RQ (2016) Nanoliposomes protect against human arteriole endothelial dysfunction induced by β-amyloid peptide. J Cereb Blood Flow Metab 36(2):405–412PubMedCrossRefGoogle Scholar
  395. Tsai MJ, Huang YB, Wu PC, Fu YS, Kao YR, Fang JY, Tsai YH (2011) Oral apomorphine delivery from solid lipid nanoparticles with different monostearate emulsifiers: pharmacokinetic and behavioral evaluations. J Pharm Sci 100(2):547–557PubMedCrossRefGoogle Scholar
  396. Tsai MJ, Fu YS, Lin YH, Huang YB, Wu PC (2014) The effect of nanoemulsion as a carrier of hydrophilic compound for transdermal delivery. PLoS One 9(7):e102850PubMedPubMedCentralCrossRefGoogle Scholar
  397. Tucholski J, Kuret J, Johnson GV (1999) Tau is modified by tissue transglutaminase in situ: possible functional and metabolic effects of polyamination. J Neurochem 73:1871–1880PubMedGoogle Scholar
  398. Tzeyung AS, Md S, Bhattamisra SK, Madheswaran T, Alhakamy NA, Aldawsari HM, Radhakrishnan AK (2019) Fabrication, optimization, and evaluation of rotigotine-loaded chitosan nanoparticles for nose-to-brain delivery. Pharmaceutics 11(1):26PubMedCentralCrossRefPubMedGoogle Scholar
  399. Ul Amin F, Hoshiar AK, Do TD, Noh Y, Shah SA, Khan MS, Yoon J, Kim MO (2017) Osmotin-loaded magnetic nanoparticles with electromagnetic guidance for the treatment of Alzheimer's disease. Nanoscale 9(30):10619–10632CrossRefGoogle Scholar
  400. Vaculíková E, Černíková A, Plachá D, Pisárčik M, Dedková K, Peikertová P, Devínský F, Jampílek J (2016a) Cimetidine nanoparticles for permeability enhancement. J Nanosci Nanotechnol 16(8):7840–7843CrossRefGoogle Scholar
  401. Vaculíková E, Černíková A, Plachá D, Pisárčik M, Peikertová P, Dedková K, Devínský F, Jampílek J (2016b) Preparation of hydrochlorothiazide nanoparticles for solubility enhancement. Molecules 21(8):1005PubMedCentralCrossRefPubMedGoogle Scholar
  402. Vaculíková E, Pokorná A, Plachá D, Pisárčik M, Dedková K, Peikertová P, Devínský F, Jampílek J (2019) Improvement of glibenclamide water solubility by nanoparticle preparation. J Nanosci Nanotechnol 19(5):3031–3034PubMedCrossRefGoogle Scholar
  403. Vakilinezhad MA, Amini A, Javar HA, Zarandi BFBB, Montaseri H, Dinarvand R (2018) Nicotinamide loaded functionalized solid lipid nanoparticles improves cognition in Alzheimer's disease animal model by reducing tau hyperphosphorylation. DARU J Pharm Sci 26(2):165–177CrossRefGoogle Scholar
  404. Valenza M, Chen JY, Di Paolo E, Ruozi B, Belletti D, Bardile CF, Leoni V, Caccia C, Brilli E, Di Donato S, Boido MM, Vercelli A, Vandelli MA, Forni F, Cepeda C, Levine MS, Tosi G, Cattaneo E (2015) Cholesterol-loaded nanoparticles ameliorate synaptic and cognitive function in Huntington's disease mice. EMBO Mol Med 7(12):1547–1564PubMedPubMedCentralCrossRefGoogle Scholar
  405. Vargas-Osorio Z, Da Silva-Candal A, Piñeiro Y, Iglesias-Rey R, Sobrino T, Campos F, Castillo J, Rivas J (2019) Multifunctional superparamagnetic stiff nanoreservoirs for blood brain barrier applications. Nano 9(3):449Google Scholar
  406. Vassiliou AA, Papadimitriou SA, Bikiaris DN, Mattheolabakis G, Avgoustakis K (2010) Facile synthesis of polyester-PEG triblock copolymers and preparation of amphiphilic nanoparticles as drug carriers. J Control Release 148(3):388–395PubMedCrossRefGoogle Scholar
  407. Vilaca-Faria H, Salgado AJ, Teixeira FG (2019) Mesenchymal stem cells-derived exosomes: a new possible therapeutic strategy for Parkinson's disease? Cell 8(2):E118CrossRefGoogle Scholar
  408. Vilella A, Belletti D, Sauer AK, Hagmeyer S, Sarowar T, Masoni M, Stasiak N, Mulvihill JJE, Ruozi B, Forni F, Vandelli MA, Tosi G, Zoli M, Grabrucker AM (2018) Reduced plaque size and inflammation in the APP23 mouse model for Alzheimer's disease after chronic application of polymeric nanoparticles for CNS targeted zinc delivery. J Trace Elem Med Biol 49:210–221PubMedCrossRefGoogle Scholar
  409. Wahba SMR, Darwish AS, Kamal SM (2016) Ceria-containing uncoated and coated hydroxyapatite-based galantamine nanocomposites for formidable treatment of Alzheimer's disease in ovariectomized albino-rat model. Mater Sci Eng C Mater Biol Appl 65:151–163PubMedCrossRefGoogle Scholar
  410. Walker FO (2007) Huntington's disease. Lancet 369:218–228PubMedCrossRefGoogle Scholar
  411. Wang P, Wang ZY (2017) Metal ions influx is a double edged sword for the pathogenesis of Alzheimer's disease. Ageing Res Rev 35:265–290PubMedCrossRefGoogle Scholar
  412. Wang JZ, Grundke-Iqbal I, Iqbal K (1996) Glycosylation of microtubule-associated protein tau: An abnormal posttranslational modification in Alzheimer's disease. Nat Med 2:871–875PubMedCrossRefGoogle Scholar
  413. Wang Z, Mu HJ, Zhang XM, Ma PK, Lian SN, Zhang FP, Chu SY, Zhang WW, Wang AP, Wang WY, Sun KX (2015) Lower irritation microemulsion-based rotigotine gel: formulation optimization and in vitro and in vivo studies. Int J Nanomedicine 10:633–644PubMedPubMedCentralGoogle Scholar
  414. Wang ML, Li L, Zhang XW, Liu YP, Zhu RY, Liu LX, Fang Y, Gao ZR, Gao DW (2018a) Magnetic resveratrol liposomes as a new theranostic platform for magnetic resonance imaging guided Parkinson's disease targeting therapy. ACS Sustain Chem Eng 6(12):17124–17133CrossRefGoogle Scholar
  415. Wang XH, Wang XY, Guo ZJ (2018b) Metal-involved theranostics: An emerging strategy for fighting Alzheimer's disease. Coord Chem Rev 362:72–84CrossRefGoogle Scholar
  416. Wang PZ, Zheng XY, Guo Q, Yang P, Pang XY, Qian K, Lu W, Zhang QZ, Jiang XG (2018c) Systemic delivery of BACE1 siRNA through neuron-targeted nanocomplexes for treatment of Alzheimer's disease. J Control Release 279:220–233PubMedCrossRefGoogle Scholar
  417. Wang W, Han Y, Fan Y, Wang Y (2019) Effects of gold nanospheres and nanocubes on amyloid-β peptide fibrillation. Langmuir 35(6):2334–2342PubMedCrossRefGoogle Scholar
  418. Warren JD, Rohrer JD, Rossor MN (2013) Frontotemporal dementia. BMJ 347:f4827PubMedPubMedCentralCrossRefGoogle Scholar
  419. Wavikar PR, Vavia PR (2015) Rivastigmine-loaded in situ gelling nanostructured lipid carriers for nose to brain delivery. J Liposome Res 25(2):141–149PubMedCrossRefGoogle Scholar
  420. Wen CJ, Zhang LW, Al-Suwayeh SA, Yen TC, Fang JY (2012) Theranostic liposomes loaded with quantum dots and apomorphine for brain targeting and bioimaging. Int J Nanomedicine 7:1599–1611PubMedPubMedCentralGoogle Scholar
  421. Weng M, Xie X, Liu C, Lim KL, Zhang CW, Li L (2018) The sources of reactive oxygen species and its possible role in the pathogenesis of Parkinson's disease. Parkinson’s Disease 2018:9163040PubMedPubMedCentralGoogle Scholar
  422. Whiteley CG (2014) Arginine metabolising enzymes as targets against Alzheimers' disease. Neurochem Int 67:23–31PubMedCrossRefGoogle Scholar
  423. Wilson B (2019) Drug targeting strategies into the brain for treating neurological diseases. J Neurosci Methods 311:133–146CrossRefGoogle Scholar
  424. Wilson B, Samanta MK, Santhi K, Kumar KPS, Paramakrishnan N, Suresh, B (2008a) Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer's disease. Brain Res 1200:159–168PubMedCrossRefGoogle Scholar
  425. Wilson B, Samanta MK, Santhi K, Kumar KPS, Paramakrishnan N, Suresh B (2008b) Targeted delivery of tacrine into the brain with polysorbate 80-coated poly(n-butylcyanoacrylate) nanoparticles. Eur J Pharm Biopharm 70(1):75–84PubMedCrossRefGoogle Scholar
  426. Wilson B, Samanta MK, Santhi K, Kumar KPS, Ramasamy M, Suresh B (2009) Significant delivery of tacrine into the brain using magnetic chitosan microparticles for treating Alzheimer's disease. J Neurosci Methods 177(2):427–433PubMedCrossRefGoogle Scholar
  427. Wilson B, Samanta MK, Santhi K, Kumar KPS, Ramasamy M, Suresh B (2010) Chitosan nanoparticles as a new delivery system for the anti-Alzheimer drug tacrine. Nanomedicine 6(1):144–152CrossRefGoogle Scholar
  428. Wimo A, Jonsson L, Gustavsson A, McDaid D, Ersek K, Georges J, Gulacsi L, Karpati K, Kenigsberg P, Valtonen H (2011) The economic impact of dementia in Europe in 2008-cost estimates from the Eurocode project. Int J Geriatr Psychiatry 26:825–832PubMedCrossRefGoogle Scholar
  429. Wischik CM, Novák M, Edwards PC, Klug A, Tichelaar W, Crowther RA (1988) Structural characterization of the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci U S A 85:4884–4888PubMedPubMedCentralCrossRefGoogle Scholar
  430. Wong HL, Wu XY, Bendayan R (2012) Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev 64(7):686–700PubMedCrossRefGoogle Scholar
  431. Wong KH, Riaz MK, Xie Y, Zhang X, Liu Q, Chen H, Bian ZX, Chen XY, Lu AP, Yang ZJ (2019) Review of current strategies for delivering Alzheimer's disease drugs across the blood-brain barrier. Int J Mol Sci 20(2):E381PubMedCrossRefGoogle Scholar
  432. Wu FG, Yang P, Zhang C, Li BL, Han XF, Song MH, Chen Z (2014) Molecular interactions between amantadine and model cell membranes. Langmuir 30(28):8491–8499PubMedCrossRefGoogle Scholar
  433. Xiang Y, Wu Q, Liang L, Wang XQ, Wang JC, Zhang X, Pu XP, Zhang Q (2012) Chlorotoxin-modified stealth liposomes encapsulating levodopa for the targeting delivery against the Parkinson's disease in the MPTP-induced mice model. J Drug Target 20(1):67–75PubMedCrossRefGoogle Scholar
  434. Xu MM, Zhou H, Liu YN, Sun J, Xie WJ, Zhao P, Liu J (2018) Ultrasound-excited protoporphyrin IX-modified multifunctional nanoparticles as a strong inhibitor of tau phosphorylation and β-amyloid aggregation. ACS Appl Mater Interfaces 10(39):32965–32980PubMedCrossRefGoogle Scholar
  435. Yan XJ, Xu LX, Bi CC, Duan DY, Chu LX, Yu X, Wu ZM, Wang AP, Sun KX (2018) Lactoferrin-modified rotigotine nanoparticles for enhanced nose-to-brain delivery: LESA-MS/MS-based drug biodistribution, pharmacodynamics, and neuroprotective effects. Int J Nanomedicine 13:273–281PubMedPubMedCentralCrossRefGoogle Scholar
  436. Yang Z, Liu ZW, Allaker RP, Reip P, Oxford J, Ahmad Z, Ren G (2010a) A review of nanoparticle functionality and toxicity on the central nervous system. J R Soc Interface 7(4):S411–S422PubMedPubMedCentralGoogle Scholar
  437. Yang Z, Zhang YG, Yang YLA, Sun L, Han D, Li H, Wang C (2010b) Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease. Nanomedicine 6(3):427–441PubMedCrossRefGoogle Scholar
  438. Yang XX, Zheng RY, Cai YP, Liao ML, Yuan WE, Liu ZG (2012a) Controlled-release levodopa methyl ester/benserazide-loaded nanoparticles ameliorate levodopa-induced dyskinesia in rats. Int J Nanomedicine 7:2077–2086PubMedPubMedCentralGoogle Scholar
  439. Yang XX, Chen YH, Hong XY, Wu N, Song L, Yuan WE, Liu ZG (2012b) Levodopa/benserazide microspheres reduced levodopa-induced dyskinesia by downregulating phosphorylated GluR1 expression in 6-OHDA-lesioned rats. Drug Des Devel Ther 6:341–347PubMedPubMedCentralGoogle Scholar
  440. Yang ZZ, Zhang YQ, Wang ZZ, Wu K, Lou JN, Qi XR (2013) Enhanced brain distribution and pharmacodynamics of rivastigmine by liposomes following intranasal administration. Int J Pharm 452(1–2):344–354PubMedCrossRefGoogle Scholar
  441. Yang X, Ji X, Shi C, Liu J, Wang H, Luan Y (2014a) Investigation on the ion pair amphiphiles and their in vitro release of amantadine drug based on PLGA-PEG-PLGA gel. J Nanopart Res 16(12):2780CrossRefGoogle Scholar
  442. Yang XF, He CE, Li J, Chen HB, Ma Q, Sui XJ, Tian SL, Ying M, Zhang Q, Luo YG, Zhuang ZX, Kiu JJ (2014b) Uptake of silica nanoparticles: neurotoxicity and Alzheimer-like pathology in human SK-N-SH and mouse neuro2a neuroblastoma cells. Toxicol Lett 229(1):240–249PubMedCrossRefGoogle Scholar
  443. Yang SY, Chiu MJ, Chen TF, Lin CH, Jeng JS, Tang SC, Lee YF, Yang CC, Liu BH, Chen HH, Wu CC (2017) Analytical performance of reagent for assaying tau protein in human plasma and feasibility study screening neurodegenerative diseases. Sci Rep 7:9304PubMedPubMedCentralCrossRefGoogle Scholar
  444. Yang R, Zheng Y, Wang QJ, Zhao L (2018a) Curcumin-loaded chitosan–bovine serum albumin nanoparticles potentially enhanced Aβ 42 phagocytosis and modulated macrophage polarization in Alzheimer’s disease. Nanoscale Res Lett 13:330PubMedPubMedCentralCrossRefGoogle Scholar
  445. Yang LC, Wang WJ, Chen JG, Wang N, Zheng GD (2018b) A comparative study of resveratrol and resveratrol-functional selenium nanoparticles: inhibiting amyloid β aggregation and reactive oxygen species formation properties. J Biomed Mater Res A 106(12):3034–3041PubMedCrossRefGoogle Scholar
  446. Yang LC, Wang N, Zheng GD (2018c) Enhanced effect of combining chlorogenic acid on selenium nanoparticles in inhibiting amyloid β aggregation and reactive oxygen species formation in vitro. Nanoscale Res Lett 13:303PubMedPubMedCentralCrossRefGoogle Scholar
  447. Yarjanli Z, Ghaedi K, Esmaeili A, Rahgozar S, Zarrabi A (2017) Iron oxide nanoparticles may damage to the neural tissue through iron accumulation, oxidative stress, and protein aggregation. BMC Neurosci 18:51PubMedPubMedCentralCrossRefGoogle Scholar
  448. Ye Y, Hui L, Lakpa KL, Xing YQ, Wollenzien H, Chen XS, Zhao J, Geiger JD (2019) Effects of silica nanoparticles on endolysosome function in primary cultured neurons. Can J Physiol Pharmacol 97(4):297–305PubMedCrossRefGoogle Scholar
  449. Yehia SA, El-Shafeey AH, El-Sayed I (2012) Biodegradable donepezil lipospheres for depot injection: optimization and in-vivo evaluation. J Pharm Pharmacol 64(10):1425–1437PubMedCrossRefGoogle Scholar
  450. Yi X, Wu YX, Tan GX, Yu P, Zhou L, Zhou ZN, Chen JQ, Wang ZG, Pang JS, Ning CY (2017) Palladium nanoparticles entrapped in a self-supporting nanoporous gold wire as sensitive dopamine biosensor. Sci Rep 7:7941PubMedPubMedCentralCrossRefGoogle Scholar
  451. Yin TT, Yang LC, Liu YN, Zhou XB, Sun J, Liu J (2015) Sialic acid (SA)-modified selenium nanoparticles coated with a high blood-brain barrier permeability peptide-B6 peptide for potential use in Alzheimer's disease. Acta Biomater 25:172–183PubMedCrossRefGoogle Scholar
  452. Yin TT, Xie WJ, Sun J, Yang L, Liu J (2016) Penetratin peptide-functionalized gold nanostars: enhanced BBB permeability and NIR photothermal treatment of Alzheimer's disease using ultralow irradiance. ACS Appl Mater Interfaces 8(30):19291–19302PubMedCrossRefGoogle Scholar
  453. Yoo J, Lee E, Kim HY, Youn DH, Jung J, Kim H, Chang YJ, Lee W, Shin J, Baek S, Jang W, Jun W, Kim S, Hong J, Park HJ, Lengner CJ, Moh SH, Kwon Y, Kim J (2017) Electromagnetized gold nanoparticles mediate direct lineage reprogramming into induced dopamine neurons in vivo for Parkinson's disease therapy. Nat Nanotechnol 12(10):1006–1014PubMedCrossRefGoogle Scholar
  454. You LH, Wang J, Liu TQ, Zhang YL, Han XX, Wang T, Guo SS, Dong TY, Xu JC, Anderson GJ, Liu Q, Chang YZ, Lou X, Nie G (2018a) Targeted brain delivery of rabies virus glycoprotein 29-modified deferoxamine-loaded nanoparticles reverses functional deficits in Parkinsonian mice. ACS Nano 12(5):4123–4139PubMedCrossRefGoogle Scholar
  455. You R, Ho YS, Hung CHL, Liu Y, Huang CX, Chan HN, Ho SL, Lui SY, Li HW, Chang RCC (2018b) Silica nanoparticles induce neurodegeneration-like changes in behavior, neuropathology, and affect synapse through MAPK activation. Part Fibre Toxicol 15:28PubMedPubMedCentralCrossRefGoogle Scholar
  456. Yu YY, Wang P, Zhu XD, Peng QW, Zhou Y, Yin TX, Liang YX, Yin XX (2018) Combined determination of copper ions and β-amyloid peptide by a single ratiometric electrochemical biosensor. Analyst 143(1):323–331CrossRefGoogle Scholar
  457. Zaidi SA (2018) Development of molecular imprinted polymers based strategies for the determination of dopamine. Sensors Actuators B Chem 265:488–497CrossRefGoogle Scholar
  458. Zeinabad HA, Zarrabian A, Saboury AA, Alizadeh AM, Falahati M (2016) Interaction of single and multi wall carbon nanotubes with the biological systems: tau protein and PC12 cells as targets. Sci Rep 6:26508PubMedPubMedCentralCrossRefGoogle Scholar
  459. Zhan QC, Shi XQ, Wang T, Hu JH, Zhou JH, Zhou L, Wei SH (2019) Design and synthesis of thymine modified phthalocyanine for Aβ protofibrils photodegradation and Aβ peptide aggregation inhibition. Talanta 191:27–38PubMedCrossRefGoogle Scholar
  460. Zhang C, Wan X, Zheng XY, Shao XY, Liu QF, Zhang QZ, Qian Y (2014a) Dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer's disease mice. Biomaterials 35(1):456–465PubMedCrossRefGoogle Scholar
  461. Zhang C, Chen J, Feng CC, Shao XY, Liu QF, Zhang QZ, Pang ZQ, Jiang XG (2014b) Intranasal nanoparticles of basic fibroblast growth factor for brain delivery to treat Alzheimer's disease. Int J Pharm 461(1–2):192–202PubMedCrossRefGoogle Scholar
  462. Zhang NS, Yan F, Liang XL, Wu MX, Shen YY, Chen M, Xu YX, Zou GY, Jiang P, Tang CY, Zheng HR, Dai ZF (2018a) Localized delivery of curcumin into brain with polysorbate 80-modified cerasomes by ultrasound-targeted microbubble destruction for improved Parkinson's disease therapy. Theranostics 8(8):2264–2277PubMedPubMedCentralCrossRefGoogle Scholar
  463. Zhang H, Dong XY, Liu FF, Zheng J, Sun Y (2018b) Ac-LVFFARK-NH2 conjugation to β-cyclodextrin exhibits significantly enhanced performance on inhibiting amyloid β-protein fibrillogenesis and cytotoxicity. Biophys Chem 235:40–47PubMedCrossRefGoogle Scholar
  464. Zhang HQ, Zhao YP, Yu M, Zhao ZQ, Liu PX, Cheng H, Ji Y, Jin Y, Sun B, Zhou JP, Ding Y (2019a) Reassembly of native components with donepezil to execute dual-missions in Alzheimer's disease therapy. J Control Release 296:14–28PubMedCrossRefGoogle Scholar
  465. Zhang WJ, Christofferson AJ, Besford QA, Richardson JJ, Guo JL, Kempe K, Yarovsky J, Caruso F (2019b) Metal-dependent inhibition of amyloid fibril formation: synergistic effects of cobalt-tannic acid networks. Nanoscale 11(4):1921–1928PubMedCrossRefGoogle Scholar
  466. Zhang L, Zhao PG, Yue CP, Jin ZK, Liu Q, Du XB, He QJ (2019c) Sustained release of bioactive hydrogen by Pd hydride nanoparticles overcomes Alzheimer's disease. Biomaterials 197:393–404PubMedCrossRefGoogle Scholar
  467. Zhao GF, Dong XY, Sun Y (2019) Self-assembled curcumin-poly(carboxybetaine methacrylate) conjugates: potent nano-inhibitors against amyloid β-protein fibrillogenesis and cytotoxicity. Langmuir 35(5):1846–1857PubMedCrossRefGoogle Scholar
  468. Zheng XY, Shao XY, Zhang C, Tan YZ, Liu QF, Wan X, Zhang QZ, Xu SM, Jiang XG (2015) Intranasal H102 peptide-loaded liposomes for brain delivery to treat Alzheimer's disease. Pharm Res 32(12):3837–3849PubMedCrossRefGoogle Scholar
  469. Zhou YZ, Alany RG, Chuang V, Wen JY (2013) Optimization of PLGA nanoparticles formulation containing L-DOPA by applying the central composite design. Drug Dev Ind Pharm 39(2):321–330PubMedCrossRefGoogle Scholar
  470. Zhou WH, Wang HH, Li WT, Guo XC, Kou DX, Zhou ZJ, Meng YN, Tian QW, Wu SX (2018) Gold nanoparticles sensitized ZnO nanorods arrays for dopamine electrochemical sensing. J Electrochem Soc 165(12):G3001–G3007CrossRefGoogle Scholar
  471. Zhu S, Stavrovskaya IG, Drozda M, Kim BYS, Ona V, Li M, Sarang S, Liu AS, Hartley DM, Wu DC, Gullans S, Ferrante RJ, Przedborski S, Kristal BS, Friedlander RM (2002) Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature 417(6884):74–78PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Josef Jampílek
    • 1
    • 2
  • Katarína Kráľová
    • 3
  • Petr Novák
    • 1
  • Michal Novák
    • 1
  1. 1.Institute of Neuroimmunology, Slovak Academy of SciencesBratislavaSlovakia
  2. 2.Division of Biologically Active Complexes and Molecular Magnets, Faculty of ScienceRegional Centre of Advanced Technologies and Materials, Palacký UniversityOlomoucCzech Republic
  3. 3.Faculty of Natural SciencesInstitute of Chemistry, Comenius UniversityBratislavaSlovakia

Personalised recommendations