Nanobiotechnology in Neurodegenerative Diseases pp 241-266 | Cite as
Nanomedicines for Improved Antiretroviral Therapy in Neuro-AIDS
Abstract
Human immunodeficiency virus is neurotropic which invades the central nervous system (CNS) in early course of systemic infection and makes the CNS an important dominant reservoir with the capacity to supply virus in low/undetectable viremia. Neuro-AIDS is the major upcoming issue among long-term seropositive survivors as a consequence of incompetence of antiretroviral in complete eradication of HIV from the CNS. Justification behind the low CNS concentration of antiretroviral is anatomical barrier and physicochemical properties of antiretrovirals. Some unmet needs in neuro-AIDS treatment are simplified CNS-targeted treatment regimen and disease-modifying therapies. Target-specific, safe, and controllable nanomedicines have been extensively studied, with particular success, to overcome the natural barriers to the antiretroviral drug delivery posed by the CNS anatomy, histology, and physiology. This chapter insight on current understanding of neuro-AIDS and the pathological mechanisms involved several limitations to the eradication of latent reservoirs and approaches to circumvent these limitations by state-of-the-art nanomedicines.
Keywords
Neuro-AIDS Antiretroviral Nanomedicines HIV CNSNomenclature
- ABC
ATP-binding cassette
- ADC
AIDS dementia complex
- AIDS
Acquired immunodeficiency syndrome
- ARV
Antiretroviral
- BBB
Blood-brain barrier
- BCRP
Breast cancer resistance protein
- BCSFB
Blood-cerebrospinal fluid barrier
- BMECs
Brain microvessel endothelial cells
- BMVECs
Brain microvascular endothelial cells
- cART
Combination antiretroviral therapy
- CCR5
C-C chemokine receptor type 5
- CD4
Cluster of differentiation 4
- CNS
Central nervous system
- CSF
Cerebrospinal fluid
- CSFB
Cerebrospinal fluid-brain barrier
- CXCR4
C-X-C chemokine receptor type 4
- gp120
Glycoprotein 120
- HAART
Highly active antiretroviral therapy
- HAND
HIV-associated neurocognitive disorders
- hCMEC/D3
Human cerebral microvascular endothelial cell line
- HIV
Human immunodeficiency virus
- NLCs
Nanostructured lipid carriers
- PLA
Polylactic acid
- PLGA
Poly(D,L-lactic-co-glycolic acid)
- siRNA
Small interfering ribonucleic acid
- SIV
Simian immunodeficiency virus
- SLN
Solid lipid nanoparticle
- Vpr
Viral protein R
References
- Albright A, Soldan S, Gonzalez-Scarano F (2003) Pathogenesis of human immunodeficiency virus-induced neurological disease. J Neurovirol 9:222–227PubMedCrossRefPubMedCentralGoogle Scholar
- Alghananeem AM, Saeed H, Florence R, Yokel R, Malkawi A (2010) Intranasal drug didanosine-loadedchitosan nanoparticles for brain targeting; an attractive route against ing=fections caused by AIDS viruses. J Drug Targeting 18:381–388Google Scholar
- Ballabh P, Braun A, Nedergaard M (2004) The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16:1–13PubMedCrossRefPubMedCentralGoogle Scholar
- Barbi M, Carvalho C, Kiill C, Barud H, Santagneli S, Ribeiro S, Gremião M (2015) Preparation and characterization of chitosan nanoparticles for zidovudine nasal delivery. J Nanosci Nanotechnol 15:865–874CrossRefGoogle Scholar
- Batrakova E, Li S, Miller D, Kabanov A (1999) Pluronic P85 increases permeability of a broad spectrum of drugs in polarized BBMEC and Caco-2 cell monolayers. Pharm Res 16:1366–1372PubMedCrossRefPubMedCentralGoogle Scholar
- Belgamwar A, Khan S, Yeole P (2018) Intranasal chitosan-g-HPβCD nanoparticles of efavirenz for the CNS targeting. Artif Cell Nanomed Biotechnol 46:374–386CrossRefGoogle Scholar
- Belgamwar A, Khan S, Yeole P (2019) Intranasal dolutegravir sodium loaded nanoparticles of hydroxypropyl-betacyclodextrin for brain delivery in neuro-AIDS. J Drug Deliv Sci Technol 52:1008–1020CrossRefGoogle Scholar
- Bell J (2004) An update on the neuropathology of HIV in the HAART era. Histopathology 45:549–559PubMedCrossRefPubMedCentralGoogle Scholar
- Blasi P, Giovagnoli S, Schoubben A, Ricci M, Rossi C (2007) Solid lipid nanoparticles for targeted brain drug delivery. Adv Drug Deliv Rev 59:454–477PubMedCrossRefPubMedCentralGoogle Scholar
- Chattopadhyay N, Zastre J, Wong HL, Wu XY, Bendayan R (2008) Solid lipid nanoparticles enhance the delivery of the HIV protease inhibitor, atazanavir, by a human brain endothelial cell line. Pharm Res 25:2262–2271PubMedCrossRefPubMedCentralGoogle Scholar
- Chiappetta D, Hocht C, Opezzo J, Sosnik A (2013) Intranasal administration of antiretroviral-loaded micelles for anatomical targeting to the brain in HIV. Nanomedicine 8:223–237PubMedCrossRefPubMedCentralGoogle Scholar
- Connor R, Sheridan K, Ceradini D, Choe S, Landau N (1997) Change in coreceotor use correlates with disease progression in HIV-1 infected individuals. J Exp Med 185:621–628PubMedPubMedCentralCrossRefGoogle Scholar
- Dalpiaz A, Fogagnolo M, Ferraro L, Capuzzo A, Pavan B, Rassu G, Salis A, Giunchedi P, Gavini E (2015) Nasal chitosan microparticles target a zidovudine prodrug to brain HIV sanctuaries. Antiviral Res 123:146–157PubMedCrossRefPubMedCentralGoogle Scholar
- Das M, Chakraborty T (2015) Progress in brain delivery of anti-HIV drugs. J Appl Pharm Sci 5:154–164CrossRefGoogle Scholar
- Das S, Ng W, Tan R (2012) Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur J Pharm Sci 47:139–151PubMedCrossRefPubMedCentralGoogle Scholar
- Dash P, Gendelman H, Roy U, Balkundi S, Alnouti Y, Mosley R, Gelbard H, McMillan J, Gorantla S, Poluektova L (2012) Long-acting nanoformulated antiretroviral therapy elicits potent antiretroviral and neuroprotective responses in HIV-1-infected humanized mice. AIDS 26:2135–2144PubMedPubMedCentralCrossRefGoogle Scholar
- Date A, Destache C (2013) A review of nanotechnological approaches for the prophylaxis of HIV/AIDS. Biomaterials 34:6202–6228PubMedPubMedCentralCrossRefGoogle Scholar
- Destache C, Belgum T, Goede M, Shibata A, Belshan M (2010) Antiretroviral release from poly(DL-lactide-coglycolide) nanoparticles in mice. J Antimicrob Chemother 65:2183–2187PubMedPubMedCentralCrossRefGoogle Scholar
- Dhembre G, Moon R, Kshirsagar R (2011) A review on polymeric micellar nanocarriers. Int J Pharm Biol Sci 2:109–116Google Scholar
- Doktorovováa S, Araújob J, Garciab M, Rakovský E, Soutoa E (2010) Formulating fluticasone propionate in novel PEG-containing nanostructured lipid carriers (PEG-NLC). Colloids Surf B Biointerfaces 75:538–542CrossRefGoogle Scholar
- Dou H, Destache C, Morehead J, Mosley R, Boska M, Kingsley J, Gorantla S, Poluektova L, Nelson J, Chaubal M, Werling J, Kipp J, Rabinow B, Gendelman H (2006) Development of a macrophage-based nanoparticle platform for antiretroviral drug delivery. Blood 108:2827–2835PubMedPubMedCentralCrossRefGoogle Scholar
- Dou H, Grotepas CB, McMillan J, Destache C, Chaubal M, Werling J, Kipp J, Rabinow B, Gendelman H (2009) Macrophage delivery of nanoformulated antiretroviral drug to the brain in a murine model of neuroAIDS. J Immunol 183:661–669PubMedPubMedCentralCrossRefGoogle Scholar
- Dusserre N, Lessard C, Paquette N, Perron S, Poulin L, Tremblay M, Beauchamp D, Désormeaux A, Bergeron M (1995) Encapsulation of foscarnet in liposomes modifies drug intracellular accumulation, in vitro anti-HIV-1 activity, tissue distribution and pharmacokinetics. AIDS 9:833–841PubMedCrossRefPubMedCentralGoogle Scholar
- Dutta T, Jain N (2007) Targeting potential and anti-HIV activity of lamivudine loaded mannosylated poly (propyleneimine) dendrimers. Biochim Biophys Acta, Gen Subj 1770:681–686CrossRefGoogle Scholar
- Dutta T, Garg M, Jain N (2008) Targeting of efavirenz loaded tuftsin conjugated poly (propyleneimine) dendrimers to HIV infected macrophages in vitro. Eur J Pharm Sci 34:181–189PubMedCrossRefPubMedCentralGoogle Scholar
- Fact sheet. UNAIDS. 2018. http://www.unaids.org/en/resources/fact-sheet.
- Fiandra L, Colombo M, Mazzucchelli S, Santini B, Nebuloni M, Capetti A, Rizzardini G, Prosperi D, Corsi F (2015) Nanoformulation of antiretroviral drugs enhances their penetration across the blood brain barrier in mice. Nanomedicine 11:1387–1397PubMedCrossRefPubMedCentralGoogle Scholar
- Gonzalez-Scarano F, Martin-Garcia J (2005) The neuropathogenesis of AIDS. Nat Rev Immunol 5:69–81PubMedCrossRefPubMedCentralGoogle Scholar
- Greene W (2007) A history of AIDS: looking back to see ahead. Eur J Immunol 37:94–102CrossRefGoogle Scholar
- Gupta S, Kesarla R, Chotai N, Misra A, Omri A (2017) Systematic approach for the formulation and optimization of solid lipid nanoparticles of efavirenz by high pressure homogenization using design of experiments for brain targeting and enhanced bioavailability. Biomed Res Int 2017:5984014PubMedPubMedCentralGoogle Scholar
- Hu F, Jiang S, Du Y, Yuan H, Ye Y, Zeng S (2006) Preparation and characteristics of monostearin nanostructured lipid carriers. Int J Pharm 314:83–89PubMedCrossRefPubMedCentralGoogle Scholar
- Jain S, Gupta Y, Jain A, Saxena A, Khare P, Jain A (2009) Mannosylated gelatin nanoparticles bearing an anti-HIV drug didanosine for site-specific delivery. Nanomedicine 4:41–48CrossRefGoogle Scholar
- Jin S, Bi D, Wang J, Wang Y, Hu H, Deng Y (2005) Pharmacokinetics and tissue distribution of zidovudine in rats following intravenous administration of zidovudine myristate loaded liposomes. Pharmazie 60:840–843PubMedPubMedCentralGoogle Scholar
- Jindal S, Bachhav P, Anil B (2017) In situ hybrid nano drug delivery system (IHN-DDS) of antiretroviral drug for simultaneous targeting to multiple viral reservoirs: an in vivo proof of concept. Int J Pharm 521:196–203PubMedCrossRefPubMedCentralGoogle Scholar
- Johanson C, Stopa E, McMillan P (2011) The blood-cerebrospinal fluid barrier: structure and functional significance. Methods Mol Biol 686:101–131PubMedCrossRefPubMedCentralGoogle Scholar
- Joshy K, Sharma C (2012) Blood compatible nanostructured lipid carriers for the enhanced delivery of azidothymidine to brain. Adv Sci Lett 6:47–55CrossRefGoogle Scholar
- Kabanov A, Alakhov V (2002) Pluronic® block copolymers in drug delivery: from micellar nanocontainers to biological response modifiers. Crit Rev Ther Drug Carrier Syst 19:1–72PubMedCrossRefPubMedCentralGoogle Scholar
- Kandadi P, Syed M, Goparaboina S, Veerabrahma K (2011) Brain specific delivery of pegylated indinavir submicron lipid emulsions. Eur J Pharm Sci 42:423–432PubMedCrossRefPubMedCentralGoogle Scholar
- Kaur A, Jain S, Tiwary A (2008) Mannan-coated gelatin nanoparticles for sustained and targeted delivery of didanosine: in vitro and in vivo evaluation. Acta Pharm 58:61–74PubMedCrossRefPubMedCentralGoogle Scholar
- Koopmans P, Ellis R, Best B, Letendre S (2009) Should antiretroviral therapy for HIV infection be tailored for intracerebral penetration? Neth J Med 67:206–211PubMedPubMedCentralGoogle Scholar
- Kramer-Hämmerle S, Rothenaigner I, Wolff H, Bell J, Brack-Werner R (2005) Cells of the central nervous system as targets and reservoirs of the human immunodeficiency virus. Virus Res 111:194–213PubMedCrossRefPubMedCentralGoogle Scholar
- Kuo Y, Su F (2007) Transport of stavudine, delavirdine, and saquinavir across the blood–brain barrier by polybutylcyanoacrylate, methylmethacrylate-sulfopropylmethacrylate, and solid lipid nanoparticles. Int J Pharm 340:143–152PubMedCrossRefPubMedCentralGoogle Scholar
- Mahajan S, Roy I, Xu G, Yong K, Ding H, Aalinkeel R, Reynolds J, Sykes D, Nair B, Lin E, Prasad P, Schwartz S (2010) Enhancing the delivery of antiretroviral drug “Saquinavir” across the blood brain barrier using nanoparticles. Curr HIV Res 8:396–404PubMedPubMedCentralCrossRefGoogle Scholar
- Mahajan S, Law W, Aalinkeel R, Reynolds J, Nair B, Yong K, Roy I, Prasad P, Schwartz S (2012) Nanoparticle-mediated targeted delivery of antiretrovirals to the brain. Methods Enzymol 509:41–60PubMedCrossRefPubMedCentralGoogle Scholar
- Mahajan H, Mahajan M, Nerkar P, Agrawal A (2014) Nanoemulsion-based intranasal drug delivery system of saquinavir mesylate for brain targeting. Drug Deliv 21:148–154PubMedCrossRefPubMedCentralGoogle Scholar
- Mainardes R, Gremião M, Brunetti I, Fonseca L, Khalil N (2009) Zidovudine-loaded PLA and PLA–PEG blend nanoparticles: influence of polymer type on phagocytic uptake by polymorphonuclear cells. J Pharm Sci 98:257–267PubMedCrossRefPubMedCentralGoogle Scholar
- McGee B, Smith N, Aweeka F (2006) HIV pharmacology: barriers to the eradication of HIV from the CNS. HIV Clin Trials 7:142–153PubMedCrossRefPubMedCentralGoogle Scholar
- Miller S (2002) HIV life cycle and potential targets for drug activity. South Afr J HIV Med 7:102–103Google Scholar
- Morison L (2001) The global epidemiology of HIV/AIDS. Br Med Bull 58:7–18PubMedCrossRefPubMedCentralGoogle Scholar
- Nair M, Jayant R, Kaushik A, Sagar V (2016) Getting into the brain: potential of nanotechnology in the management of NeuroAIDS. Adv Drug Deliv Rev 103:202–217PubMedPubMedCentralCrossRefGoogle Scholar
- Pardridge W (2002) Brain drug targeting: the future of brain drug development. J Clin Pathol 55(2):158Google Scholar
- Rao K, Ghorpade A, Labhasetwar V (2009) Targeting anti-HIV drugs to the CNS. Expert Opin Drug Deliv 6:771–784PubMedPubMedCentralCrossRefGoogle Scholar
- Rautio J, Kumpulainen H, Heimbach T, Oliyai R, Oh D, Jarvinen T, Savolainen J (2008) Prodrugs: design and clinical applications. Nat Rev Drug Discov 7:255–269PubMedCrossRefPubMedCentralGoogle Scholar
- Rodriguez M, Kaushik A, Lapierre J, Dever S, El-Hage N, Nair M (2017a) Electro-magnetic nano-particle bound Beclin1 siRNA crosses the blood – brain barrier to attenuate the inflammatory effects of HIV-1 infection in vitro. J Neuroimm Pharmacol 12:120–132CrossRefGoogle Scholar
- Rodriguez M, Lapierre J, Ojha C, Kaushik A, Batrakova E, Kashanchi F, Dever S, Nair M, El-Hage N (2017b) Intranasal drug delivery of small interfering RNA targeting Beclin1 encapsulated with polyethylenimine (PEI) in mouse brain to achieve HIV attenuation. Nat Sci Rep 8:71–10Google Scholar
- Saiyed M, Gandhi N, Nair M (2010) Magnetic nanoformulation of azidothymidine 5′-triphosphate for targeted delivery across the blood–brain barrier. Int J Nanomedicine 5:157–166PubMedPubMedCentralGoogle Scholar
- Shah L, Amiji M (2006) Intracellular delivery of saquinavir in biodegradable polymeric nanoparticles for HIV/AIDS. Pharm Res 23:2638–2645PubMedCrossRefPubMedCentralGoogle Scholar
- Sharp P, Hahn B (2012) Origins of HIV and the AIDS pandemic. Cold Spring Harb Perspect Med 1:a006841Google Scholar
- Shegokar R, Singh K (2011) Surface modified nevirapine nanosuspensions for viral reservoir targeting: in-vitro and in-vivo evaluation. Int J Pharm 421:341–352PubMedCrossRefPubMedCentralGoogle Scholar
- Shegokar R, Jansch M, Singh K, Muller R (2011) In vitro protein adsorption studies on nevirapine nanosuspensions for HIV/AIDS chemotherapy. Nanomed Nanotechnol Biol Med 7:333–340CrossRefGoogle Scholar
- Spitzenberger T, Heilman D, Diekmann C, Batrakova E, Kabanov A, Gendelman H, Elmquist W, Persidsky Y (2007) Novel delivery system enhances efficacy of antiretroviral therapy in animal model for HIV-1 encephalitis. J Cereb Blood Flow Metab 27:1033–1042PubMedCrossRefPubMedCentralGoogle Scholar
- Trkola A (2004) HIV-host interactions: vital to the virus and key to its inhibition. Curr Opin Microbiol 7:555–559PubMedCrossRefPubMedCentralGoogle Scholar
- Varatharajana L, Thomas S (2009) The transport of anti-HIV drugs across blood–CNS interfaces: summary of current knowledge and recommendations for further research. Antivir Res 82:A99–A109CrossRefGoogle Scholar
- Vinogradov S, Poluektova L, Makarov E, Gerson T, Senanayake M (2010) Nano-NRTIs: efficient inhibitors of HIV type-1 in macrophages with a reduced mitochondrial toxicity. Antivir Chem Chemother 21:1–14PubMedPubMedCentralCrossRefGoogle Scholar
- Vyas T, Shah L, Amiji M (2006) Nanoparticulate drug carriers for delivery of HIV/AIDS therapy to viral reservoir sites. Expert Opin Drug Deliv 3:613–628PubMedCrossRefPubMedCentralGoogle Scholar
- Wong H, Wu X, Bendayan R (2012) Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev 64:686–700PubMedCrossRefGoogle Scholar
- Zaitseva M, Peden K, Golding H (2003) HIV coreceptors: role of structure, posttranslational modifications, and internalization in viral cell fusion and as targets for entry inhibitors. Biochim Biophys Acta 1614:51–61PubMedCrossRefPubMedCentralGoogle Scholar