Advertisement

Neurodegenerative Diseases: The Real Problem and Nanobiotechnological Solutions

  • Mahendra Rai
  • Alka Yadav
  • Avinsh P. Ingle
  • Anatoly Reshetilov
  • María José Blanco-Prieto
  • Chistiane M. Feitosa
Chapter

Abstract

Neurodegenerative diseases are now the most debilitating disorders affecting the human population. In recent times, neurodegenerative diseases have become the fourth leading cause of death after heart disease, cancer, and stroke. Neurodegenerative diseases affect the thinking, skilled movements, feelings, cognitive behavior, and memory of a person, resulting in short-term and long-term impairment and disabilities. Neurodegenerative diseases include serious disorders like Alzheimer’s disease, Parkinson’s disease, dementia, and other rare disorders like amyotrophic lateral sclerosis, Huntington’s disease, and prion diseases. Although a century has passed since the discovery of neurodegenerative diseases, there is still a need for more diagnostic approaches and effective cure. The emerging field of nanotechnology promises new techniques to solve some of the challenges in this field. Nanotechnological tools enable drugs to cross the blood–brain barrier and target the site of action in a specific manner. The new generation nanoparticles could also be useful in the treatment of brain diseases. In the present chapter, we explain the way ahead for nanotechnology for the treatment of neurodegenerative disorders.

Keywords

Neurodegenerative diseases Alzheimer’s Parkinson’s Nanotechnology 

Notes

Acknowledgement

MKR and CMF thank CNPq (National Council for Scientific and Technological Development, Brazil) for financial support (process number 403888/2018-2).

References

  1. Adams CF, Dickso AW, Kuiper JH, Chari DM (2010) Nanoengineering neural stem cells on biomimetic substrates using magnetofection technology. Nanoscale 17:11–20Google Scholar
  2. Adhikary RR, Sandbhor P, Banerjee R (2015) Nanotechnology platforms in Parkinson’s disease. ADMET and DMPK 3(3):155–181Google Scholar
  3. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345PubMedCrossRefGoogle Scholar
  4. Alyautdin R, Khalin I, Nafeeza MI, Haron MH, Kuznetsov D (2014) Nanoscale drug delivery systems and the blood-brain barrier. Int J Nanomedicine 9:795–811Google Scholar
  5. Ansorena E, Casales E, Aranda A, Tamayo E, Garbayo E, Smerdou C, Blanco-Prieto MJ, Aymerich MS (2013) A simple and efficient method for the production of human glycosylated glial cell line-derived neurotrophic factor using a Semliki Forest virus expression system. Int J Pharma 440:19–26PubMedCrossRefGoogle Scholar
  6. Azimzadeh M, Nasirizadeh N, Rahaie M, Naderi-Manesh H (2017) Early detection of Alzheimer's disease using a biosensor based on electrochemically-reduced graphene oxide and gold nanowires for the quantification of serum microRNA-137. RSC Adv 27:55709.  https://doi.org/10.1039/c7ra09767kCrossRefGoogle Scholar
  7. Baratchi S, Kanwar RK, Khoshmanesh K, Vasu P, Ashok C, Hittu M, Parratt A, Krishankumar S, Sun X, Sahoo SK, Kanwar JR (2009) Promises of nanotechnology for drug delivery to brain in neurodegenerative diseases. Curr Nanosci 5:15–25CrossRefGoogle Scholar
  8. Barcia E, Boeva L, Garcia-Garcia L, Slowing K, Fernandez-Carballido A, Casanova Y, Negro S (2017) Nanotechnology-based drug delivery of ropinirole for Parkinson’s disease. Drug Deliv 24(1):1112–1123PubMedCrossRefGoogle Scholar
  9. Benabid AL, Chabardes S, Mitrofanis J, Pollak P (2009) Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol 8:67–81PubMedCrossRefGoogle Scholar
  10. Bhatt D, Ajmeri N, Mandal S, Rajesh KS (2011) Nanoparticle: design, characterization and evaluation for oral delivery of ropinirole hydrochloride. Elixir Pharmacy 39:4687–4689Google Scholar
  11. Blasi P, Giovagnoli S, Schoubben A, Ricci M, Rossi C (2007) Solid lipid nanoparticles for targeted brain drug delivery. Adv Drug Deliv Rev 59:454–477PubMedCrossRefGoogle Scholar
  12. Boonruamkaew P, Chonpathompikunlert P, Vong LB, Sakaue S, Tomidokoro Y, Ishii K, Tamaoka and Nagasaki Y. (2017) Chronic treatment with a smart antioxidative nanoparticles for inhibition of amyloid plaque propagation in Tg2576 mouse model of Alzheimer’s disease. Sci Rep 7:3785–3798Google Scholar
  13. Brambilla D, Droumaguet BL, Nicholas J, Hashemi H, Wu LP, Moghimi M, Couvreur P, Andrieux K (2011) Nanotechnologies for Alzheimer’s disease: diagnosis, therapy and safety issues. Nanomedicine 7:521–540CrossRefGoogle Scholar
  14. Cacciatore I, Baldassarre L, Fornasari E, Mollica A, Pinnen F, (2012) Recent Advances in the Treatment of Neurodegenerative Diseases Based on GSH Delivery Systems. Oxidative Medicine and Cellular Longevity 2012:1–12CrossRefGoogle Scholar
  15. Carradori D, Eyer J, Saulnier P, Preat V, Rieux A (2017) The therapeutic contribution of nanomedicine to treat neurodegenerative diseases via neural stem cell differentiation. Biomaterials 123:77–91PubMedCrossRefGoogle Scholar
  16. Chertok B, Moffat BA, David AE, Yu F, Bergemann C, Ross BD, Yang VC (2008) Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29(4):487–496PubMedCrossRefGoogle Scholar
  17. Colombo M, Raposo G, Théry C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289PubMedCrossRefGoogle Scholar
  18. Dai X, Li Y, Zhong Y (2018) Recent developments of nanotechnology for Alzheimer’s disease diagnosis and therapy. Glob J Nanomed 4(4):001–004Google Scholar
  19. Dam VD, De Deyn PP (2011) Animal models in the drug discovery pipeline for Alzheimer’s disease. Br J Pharmacol 164:1285–1300Google Scholar
  20. Engelhardt B, Sorokin L (2009) The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol 31:497–511PubMedCrossRefGoogle Scholar
  21. Erickson MA, Banks WA (2013) Blood-brain barrier dysfunction as a cause and consequence of Alzheimer’s disease. J Cereb Blood Flow Metab 33:1500–1513CrossRefGoogle Scholar
  22. Faiz Ul Amin, Ali Kafash Hoshiar, Ton Duc Do, Yeongil Noh, Shahid Ali Shah, Muhammad Sohail Khan, Jungwon Yoon, Myeong Ok Kim, (2017) Osmotin-loaded magnetic nanoparticles with electromagnetic guidance for the treatment of Alzheimer’s disease. Nanoscale 9 (30):10619-10632PubMedCrossRefGoogle Scholar
  23. Furtado D, Bjornmalm M, Ayton S, Bush A, Kempe K, Caruso F (2018) Overcoming the blood brain barrier: the role of nanomaterials in treating neurological diseases. Adv Mater 30(46):1801362.  https://doi.org/10.1002/adma.201801362CrossRefGoogle Scholar
  24. Garbayo E, Estella-Hermoso de Mendoza A, Blanco-Prieto MJ (2014) Diagnostic and therapeutic uses of nanomaterials in the brain. Curr Med Chem 21(36):4100–4131PubMedCrossRefGoogle Scholar
  25. Giordano C, Albani D, Gloria A, Tunesi M, Rodilossi S, Russo T, Forloni G, Ambrosio L, Cigada A (2011) Nanocomposites for neurodegenerative diseases: hydrogel-nanoparticle combinations for a challenging drug delivery. Int J Artif Organs 34(12):1115–1127PubMedCrossRefGoogle Scholar
  26. Gitler AD, Dhillon P, Shorter J (2017) Neurodegenerative disease: models, mechanisms, and a new hope. Dis Mod Mech 10:499–502CrossRefGoogle Scholar
  27. Gobbi M, Re F, Canovi M, Beeg M, Gregori M, Sesana S, Sonnino S, Brogioli D, Musicanti C, Gasco P, Salmona M, Masserini M (2010) Lipid-based nanoparticles with high binding affinity for amyloid-β1-42 peptide. Biomaterials 31:6519–6529CrossRefGoogle Scholar
  28. Gomez CT, Goreham RV, Serra JJB, Nann T, Kussmann M (2018) Exosomics: A review of biophysics, biology and biochemistry of exosomes with a focus on human breast milk. Front Genet 9:1–11.  https://doi.org/10.3389/fgene.2018.00092
  29. Gonzalez-Carter DA, Leo BF, Ruenraroengsak P, Chen S, Goode AE, Theodorou IG, Chung KF, Carzaniga R, Shaffer MSP, Dexter DT, Ryan MP, Porter AE (2017) Silver nanoparticles reduce brain inflammation and related neurotoxicity through induction of H2S-synthesizing enzymes. Sci Rep 7.  https://doi.org/10.1038/srep42871
  30. Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57(2):173–185PubMedCrossRefGoogle Scholar
  31. Hippius H, Neudorfer G (2003) The discovery of Alzheimer’s disease. Dialogues Clin Neurosci 5(1):101–108Google Scholar
  32. Kabanov AV, Gendelmen HE (2007) Nanomedicine in the diagnosis and therapy of neurodegenerative disorders. Prog Polymer Science 32(8–9):1054–1082PubMedPubMedCentralCrossRefGoogle Scholar
  33. Karthivashan G, Ganesan P, Park SY, Kin JS, Choi DK (2018) Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer’s disease. Drug Deliv 25(1):307–320PubMedPubMedCentralCrossRefGoogle Scholar
  34. Kasinathan N, Jagani HV, Alex AT, Volety SM, Rao JK (2015) Strategies for drug delivery to the central nervous system by systemic route. Drug Deliv 22(3):243–257PubMedCrossRefGoogle Scholar
  35. Kaushik AC, Bharadwaj S, Kumar S, Wei DQ (2018) Nanoparticle mediated inhibition of Parkinson’s disease using computational biology approach. Sci Rep 8:9169Google Scholar
  36. Khatoon M, Shah KU, Ud DF, Shah SU, Rehman AU, Dilawar N, Khan AN (2009) Proniosomes derived niosomes: recent advancements in drug delivery and targeting. Drug Deliv 24(2):56–69PubMedCrossRefGoogle Scholar
  37. Kim JH, Kim YS, Park K, Lee S, Nam HY, Min KH, Jo G, Park JH, Choi K, Jeong SY, Park RW, Kim IS, Kim K, Kwon IC (2008) Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice. J Control Release 127:41–49PubMedCrossRefGoogle Scholar
  38. Kirkitadze MD, Bitan G, Teplow DB (2002) Paradigm shifts in Alzheimer’s disease and other neurodegenerative disorders: the emerging role of oligomeric assemblies. J Neurosci Res 69:567–577PubMedCrossRefGoogle Scholar
  39. Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces B: Biointerfaces 75(1):1–18PubMedCrossRefGoogle Scholar
  40. Liu EY, Cali CP, Lee EB (2017) RNA metabolism in neurodegenerative diseases. Dis Mod Mech 10:509–518CrossRefGoogle Scholar
  41. Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B (2006) Titanium dioxide (P25) produces reactive oxygen species in immortalized microglia (BV2): implications for nanoparticles neurotoxicity. Environ Sci Technol 40(14):4346–4352Google Scholar
  42. Lovisolo D, Dionisi M, Ruffinatti FA, Distasi C (2018) Nanoparticles and potential neurotoxicity: focus on molecular mechanisms. AIMS Mol Sci 5(1):1–13CrossRefGoogle Scholar
  43. Masserini M (2013) Nanoparticles for brain drug delivery. ISRN Biochem 238428:18Google Scholar
  44. Mehta M, Adem A, Sabbagh M (2012) New acetylcholinesterase inhibitors for Alzheimer’s disease. Int J Alzheimers Dis 2012:1.  https://doi.org/10.1155/2012/728983CrossRefGoogle Scholar
  45. Mendes M, Sousa JJ, Pais A, Vitorino C (2018) Targeted theranostic nanoparticles for brain tumor treatment. Pharmaceutics 10:181–227PubMedCentralCrossRefPubMedGoogle Scholar
  46. Modi G, Pillay V, Choonara YE (2010) Advances in the treatment of neurodegenerative disorders employing nanotechnology. Ann N Y Acad Sci 1184:154–172CrossRefGoogle Scholar
  47. Muthu Lakshmi NV, Poojitha C, Swarajyalakshmi B (2017) Applications of nanotechnology in medical field. Int J Adv Sci Technol Eng Mgmt Sci 3(3):5–11Google Scholar
  48. Nazem A, Ali MG (2008) Nanotechnology solutions for Alzheimer’s disease: advances in research tools, diagnostic methods and therapeutic agents. J Alzheimers Dis 13:199–223PubMedCrossRefGoogle Scholar
  49. Nguyen KT, Pham MN, Vo TV, Tran PH, Tran TT (2017) Strategies of engineering nanoparticles for treating neurodegenerative disorders. Curent Drug Matabolism 18(9):786–797Google Scholar
  50. Niu X, Chen J, Gao J (2018) Nanocarriers as powerful vehicle to overcome blood-brain barrier in treating neurodegenerative diseases: focus on recent advances. Asian J Pharm Sci.  https://doi.org/10.1016/j.ajps.2018.09.005CrossRefGoogle Scholar
  51. Papadimitriou SA, Robin MP, Ceric D, O’Reilly RK, Marino S, Resmini M (2016) Fluorescent polymeric nanovehicles for neural stem cell modulation. Nanoscale 8(39):17340–17349PubMedCrossRefGoogle Scholar
  52. Pardridge WM (2012) Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 32:1959–1972CrossRefGoogle Scholar
  53. Poupot R, Bergozza D, Fruchon S (2018) Nanoparticle-based strategies to treat neuro-inflammation. Materials 11:270–284PubMedCentralCrossRefPubMedGoogle Scholar
  54. Rahman ST (2018) A review on treatment for neurodegenerative diseases with the help of nanosciences. World J Pharm Pharm Sci 6(9):153–162Google Scholar
  55. Ramanathan S, Archunan G, Sivakumar M, Selvan ST, Fred AL, Kumar S, Gulyas B, Padmanabhan P (2018) Theranostic applications of nanoparticles neurodegenerative diseases. Int J Nanomed 13:5561–5576Google Scholar
  56. Ran W, Xue X (2018) Theranostical application of nanomedicine for treating central nervous system disorders. Sci China Life Sci 61(4):392–399PubMedCrossRefGoogle Scholar
  57. Re F, Gregori M, Masserini M (2012) Nanotechnology for neurodegenerative disorders. Nanomedicine 8:S51–S58CrossRefGoogle Scholar
  58. Riazifar M, Mohammadi MR, Pone EJ, Yeri A, Lässer C, Segaliny AI, McIntyre LL, Shelke GV, Hutchins E, Hamamoto A, Calle EN, Crescitelli R, Liao W, Pham V, Yin Y, Jayaraman J, Lakey JRT, Walsh CM, Van Keuren-Jensen K, Lotvall J, Zhao W (2019) Stem cell derived exosomes as Nanotherapeutics for autoimmune and neurodegenerative disorders. ACS Nano 13(6):6670–6688.  https://doi.org/10.1021/acsnano.9b01004PubMedPubMedCentralCrossRefGoogle Scholar
  59. Safari M, Bidgoli SA, Rezayat SM (2016) Differential neurotoxic effects of silver nanoparticles: A review with special emphasis on potential biomarkers. Nanomedicine Journal 3(2):83–94Google Scholar
  60. Samaridou E, Alonso MJ (2018) Nose-to-brain peptide delivery – The potential of nanotechnology. Bioorganic & Medicinal Chemistry 26(10):2888–2905Google Scholar
  61. Saraiva C, Praca C, Ferreira R, Santos T, Ferreira L, Bernardino L (2016) Nanoparticle-mediated brain drug delivery: overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release 235:34–47PubMedCrossRefGoogle Scholar
  62. Serra A, Letunic I, Fortino V, Handy RC, Fadeel B, Tagliaferri R, Greco D (2019) Inside Nano: a systems biology framework to contextualize the mechanism-of-action of engineered nanomaterials. Sci Rep 9:179–189Google Scholar
  63. Shadab M, Bhattmisra SK, Zeeshan F, Shahzad N, Mujtaba MA, Meka VS, Radhakrishnan AKP, Baboota S, Ali J (2018) Nanocarrier enabled drug delivery systems for nose to brain targeting for the treatment of neurodegenerative disorders. J Drug Deliv Sci Technol. 43:295–310Google Scholar
  64. Sharma S, Badyal PN, Gupta S (2015) Polymeric nanoparticles drug delivery to brain: A review. Int J Pharmacol Pharm Sci 2(5):60–69Google Scholar
  65. Sheikh S, Haque E, Mir SS (2013) Neurodegenerative diseases: multifactorial conformational diseases and their therapeutic interventions. J Neurodegen Dis 2013:563481Google Scholar
  66. Shilo M, Sharon A, Baranes K, Mtiei M, Lellouche JPM, Popovtzer R (2015) The effect of nanoparticles size on the probability to cross the blood-brain barrier: an in vitro endothelial cell model. J Nanobiotechnol 13:19–26Google Scholar
  67. Silva AD, Aguirre-Cruz L, Guevara J, Ortiz-Islas E (2017) Nanobiomaterials for applications in neurodegenerative diseases. J Biomater Appl 31(7):953–984Google Scholar
  68. Sousa F, Mandal S, Garrovo C, Astolfo A, Bonifacio A, Latawiec D, Menk RH, Arfelli F, Huewel S, Legname G, Galla HJ, Krol S (2010) Functionalized gold nanoparticles: a detailed in vivo multimodal microscopic brain distribution study. Nanoscale 2:2826–242834PubMedCrossRefGoogle Scholar
  69. Spuch C, Saida O, Navarro C (2012) Advances in the treatment of neurodegenerative disorders employing nanoparticles. Recent Pat Drug Deliv Formul 6:2–18CrossRefGoogle Scholar
  70. Sun J, Wei C, Liu Y, Xie W, Xu M, Zhou H, Liu J (2019) Progressive release of mesoporous nano-selenium delivery system for the multi-channel synergistic treatment of Alzheimer's disease. Biomaterials 197:417–431.  https://doi.org/10.1016/j.biomaterials.2018.12.027PubMedCrossRefGoogle Scholar
  71. Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu IR, R. I. (2018a) Impact of nanoparticles on brain health: an up to date review. J Clin Med 7(12):490Google Scholar
  72. Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI (2018b) Blood-brain delivery methods using nanotechnology. Pharmaceutics 10(4):269.  https://doi.org/10.3390/pharmaceutics10040269PubMedCentralCrossRefPubMedGoogle Scholar
  73. Teleanu DM, Chircov C, Grumezescu AM, Teleanu RI (2019) Neuronanomedicine: an up-to-date overview. Pharmaceutics 11(3):Pii: E101.  https://doi.org/10.3390/pharmaceutics11030101PubMedCentralCrossRefPubMedGoogle Scholar
  74. Tiwari S, Sharma V, Mujawar M, Mishra YK, Kaushik A, Ghosal A (2019) Biosensors for epilepsy management: state-of-art and future aspects. Sensors (Basel) 19(7):1525.  https://doi.org/10.3390/s19071525CrossRefGoogle Scholar
  75. Topkaya SN, Azimzadeh M, Ozsoz M (2016) Electrochemical biosensors for Cancer biomarkers detection: recent advances and challenges. Electroanalysis 2016(28):1402–1419CrossRefGoogle Scholar
  76. Torre C, Cena V (2018) The delivery challenge in neurodegenerative disorders: the nanoparticles role in Alzheimer’s disease therapeutics and diagnostics. Pharmaceutics 10:190–207PubMedCentralCrossRefPubMedGoogle Scholar
  77. Torres-Ortega PV, Saludas A, Hanafy AS, Garbayo E, Blanco-Prieto MJ (2019) Micro- and nanotechnology approaches to improve Parkinson's disease therapy. J Control Release 295:201–213PubMedCrossRefGoogle Scholar
  78. Tosi G, Vandelli MA, Forni F, Ruozi B (2015) Nanomedicine and neurodegenerative disorders: so close yet so far. Expert Opin Drug Deliv 12(7):1041–1044PubMedCrossRefGoogle Scholar
  79. Trapani A, Giglio ED, Cafagna D, Denora N, Agrimi G, Cassano T, Gaetani S, Trapani G (2011) Characterization and evaluation of chitosan nanoparticles for dopamine brain delivery. Int J Pham 419:296–307PubMedCrossRefGoogle Scholar
  80. Vieira DB, Gamarra LF (2018) Multifunctional nanoparticles for successful targeted drug delivery across the blood-brain barrier. Molecular Insight of Drug Design Intech Open Chapter 691–119Google Scholar
  81. Wen MM, El-Salamouni NS, El-Refaie WM, Hazzah HA, Ali MM, Tosi G, Farid RM, Blanco-Prieto MJ, Billa N, Hanafy AS (2017) Nanotechnology-based drug delivery systems for Alzheimer's disease management: technical, industrial, and clinical challenges. J Control Release 245:95–107PubMedCrossRefGoogle Scholar
  82. Win-Shwe T, Fujimaki H (2011) Nanoparticles and neurotoxicity. Int J Mol Sci 12:6267–6280PubMedPubMedCentralCrossRefGoogle Scholar
  83. Wu X, Zheng T, Zhang B (2017) Exosomes in Parkinson's disease. Neurosci Bull 33(3):331–338.  https://doi.org/10.1007/s12264-016-0092-zPubMedPubMedCentralCrossRefGoogle Scholar
  84. You R, Ho YS, Hung CHL, Liu Y, Huang CX, Chan HN, Ho SL, Lui SY, Li HW, Chang RCC (2018) Silica nanoparticles induce neurodegeneration-like changes in behavior, neuropathology, and affect synapse through MAPK activation. Particle and Fibre Toxicology 15(1)Google Scholar
  85. Yu J, Lyubchenko YL (2009) Early stages for Parkinson’s development: α-synuclein misfolding and aggregation. J Neuroimm Pharmacol 4:10–16PubMedCrossRefGoogle Scholar
  86. Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC et al (2011) Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 19:1769–1779PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mahendra Rai
    • 1
    • 2
  • Alka Yadav
    • 1
  • Avinsh P. Ingle
    • 3
  • Anatoly Reshetilov
    • 4
  • María José Blanco-Prieto
    • 5
  • Chistiane M. Feitosa
    • 2
  1. 1.Nanobiotechnology Laboratory, Department of BiotechnologySGB Amravati UniversityAmravatiIndia
  2. 2.Department of ChemistryFederal University of PiauíTeresinaBrazil
  3. 3.Department of BiotechnologyEngineering School of Lorena, University of Sao PauloLorenaBrazil
  4. 4.FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of SciencesMoscowRussia
  5. 5.Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and NutritionUniversidad de NavarraPamplonaSpain

Personalised recommendations