Harnessing Beneficial Bacillus in Productivity Improvement of Food Security Crops of Himalayan Agro-Climatic Zones

  • Shrivardhan DheemanEmail author
  • Dinesh Kumar Maheshwari
  • Ramesh Chand Dubey
  • Sandeep Kumar
  • Nitin Baliyan
  • Sandhya Dhiman
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 23)


Food security is a burning problem before scientists, which mainly concern with the scarcity and accessible food for all. Scientists are ever-involved to find-out the solutions to overcome on these hurdles, majorly by boosting soil fertility. Over the last 20 to 30 years, the role of soil microbiome in the improvement of soil fertility and crop productivity by involving role of the microbial life has been emerged sustain and facilitated soil nutrients availability to the plants. The microbial life as the great engines enriching soil and helping to facilitate the breakdown of organic matter, that can be recycled into new life, if only they could be unlocked from that organic matter and also, from the mineral matter. The microbes, especially endospore forming Bacilli are incredibly important in the rhizosphere. Bacillus is a versatile candidate providing its services in plant growth and health promotion tirelessly. This aerobic microorganism is powered with super abilities to produce endospore resting fruiting bodies, whenever it feels unhappy under adversity. Bacillus is also known for its several characteristics, to help crop plants by virtue of producing metabolites similar to plant in the form of phytohormones. Besides, it is able to mineralize rocks and minerals into bio-available form and can metabolize organic matter into much simpler forms. Plant pumps huge amount of sugar and other organic matter in the soil through roots, which attract bacteria to fasten their growth on spent of these supplements. In addition, Bacillus is known to produce sort of secretions of which assist in root colonization due to rhizo-competence on root surface and sometimes invade in root cells. In this chapter, we have reviewed the benefits of Bacillus species to the food security crops in term of raising productivity and yield.


Bacillus Food security Eleusine coracona Amaranth Buckwheat 



DKM is thankful to Uttarakhand Council of Science & Technology (UCOST), Dehradun, India for the financial assistance in the form of R&D project UCS&T/R&D-6/17-18/14281


  1. Abdallah DB, Tounsi S, Gharsallah H, Hammami A, Frikha-Gargouri O (2018) Lipopeptides from Bacillus amyloliquefaciens strain 32a as promising biocontrol compounds against the plant pathogen Agrobacterium tumefaciens. Environ Sci Poll Res 25(36):36518–36529CrossRefGoogle Scholar
  2. Aderolu IA, Omooloye AA, Okelana FA (2013) Occurrence, abundance and control of the major insect pests associated with Amaranths in Ibadan, Nigeria. Entomol Ornithol Herpetol 2(112):2161-0983Google Scholar
  3. Agarwal M, Dheeman S, Dubey RC, Kumar P, Maheshwari DK, Bajpai VK (2017) Differential antagonistic responses of Bacillus pumilus MSUA3 against Rhizoctonia solani and Fusarium oxysporum causing fungal diseases in Fagopyrum esculentum Moench. Microbiol Res 205:40–47CrossRefGoogle Scholar
  4. Agrawal DP, Agrawal S. (2013) Characterization of Bacillus sp. strains isolated from rhizosphere of tomato plants (Lycopersicon esculentum) for their use as potential plant growth promoting rhizobacteria. Int J Curr Microbiol App Sci 2(10):406–17Google Scholar
  5. Ahl P, Voisard C, Défago G (1986) Iron bound-siderophores, cyanic acid, and antibiotics involved in suppression of Thielaviopsis basicola by a Pseudomonas fluorescens strain. J Phytopathol 116(2):121–134CrossRefGoogle Scholar
  6. Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163(2):173–181CrossRefPubMedPubMedCentralGoogle Scholar
  7. Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscipline Toxicol 2(1):1–12CrossRefGoogle Scholar
  8. Ali B, Sabri AN, Ljung K, Hasnain S (2009) Auxin production by plant associated bacteria: impact on endogenous IAA content and growth of Triticum aestivum L. Lett Appl Microbiol 48(5):542–547CrossRefGoogle Scholar
  9. Amicarelli V, Camaggio G (2012) Amaranthus: a crop to rediscover. In: Forum Ware International, vol. 2, International Society of Commodity Science and Technology (IGWT), Vienna, pp 4–11Google Scholar
  10. Angelidis AS, Smith GM (2003) Three transporters mediate uptake of glycine betaine and carnitine by Listeria monocytogenes in response to hyperosmotic stress. Appl Environ Microbial 69(2):1013–1022CrossRefGoogle Scholar
  11. Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Kudoyarova GR (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292(1–2):305–315CrossRefGoogle Scholar
  12. Armitano J, Méjean V, Jourlin-Castelli C (2014) G ram-negative bacteria can also form pellicles. Environ Microbiol Rep 6(6):534–544CrossRefGoogle Scholar
  13. Arora NK (2018) Environmental Sustainability—necessary for survival. Environ Sustain 1:2Google Scholar
  14. Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 673–677Google Scholar
  15. Arteca RN, Arteca JM (2007) Heavy-metal-induced ethylene production in Arabidopsis thaliana. J Plant Physiol 164(11):1480–1488CrossRefGoogle Scholar
  16. Asseng S, Ewert F, Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Boote KJ, Thorburn PJ, Rötter RP, Cammarano D, Brisson N (2013) Uncertainty in simulating wheat yields under climate change. Nature Clim Chan 3(9):827CrossRefGoogle Scholar
  17. Awasthi CP, Kumar A, Singh N, Thakur R (2011) Biochemical composition of grain amaranth genotypes of Himachal pradesh. Indian J Agric Biochem 24(2):141–144Google Scholar
  18. Awurum AN, Uchegbu PC (2013) Development of wet rot disease of Amaranthus cruentus L. caused by Choanephora cucurbitarum (Berk. and Rav.) Thax. in response to phytochemical treatments and inoculation methods. Adv Med Plant Res 1(3):66–71Google Scholar
  19. Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32(11):1559–1570CrossRefGoogle Scholar
  20. Bagnasco P, De La Fuente L, Gualtieri G, Noya F, Arias A (1998) Fluorescent Pseudomonas spp. as biocontrol agents against forage legume root pathogenic fungi. Soil Biol Biochem 30(10–11):1317–1322Google Scholar
  21. Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134(1):307–319CrossRefPubMedPubMedCentralGoogle Scholar
  22. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Ann Rev Plant Biol 57:233–266CrossRefGoogle Scholar
  23. Bakore N, John PJ, Bhatnagar P (2002) Evaluation of organochlorine insecticide residue levels in locally marketed vegetables of Jaipur City, Rajasthan, India. J Environ Biol 23(3):247–252PubMedGoogle Scholar
  24. Balaban NP, Suleimanova AD, Valeeva LR, Chastukhina IB, Rudakova NL, Sharipova MR, Shakirov EV (2016) Microbial phytases and phytate: exploring opportunities for sustainable phosphorus management in agriculture. Am J Mol Biol 7(01):11CrossRefGoogle Scholar
  25. Bama ME, Ramakrishnan K (2010) Effects of combined inoculation of Azospirillum and AM fungi on the growth and yield of finger millet (Eleusine coracana Gaertn) Var. Co 12. J Exp Sci 8:10–11Google Scholar
  26. Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbial Biotechnol 87(2):427–444CrossRefGoogle Scholar
  27. Barazani OZ, Friedman J (1999) Is IAA the major root growth factor secreted from plant-growth-mediating bacteria? J Chem Ecol 25(10):2397–2406CrossRefGoogle Scholar
  28. Barrio DA, Añón MC (2010) Potential antitumor properties of a protein isolate obtained from the seeds of Amaranthus mantegazzianus. Euro J Nutr 49(2):73–82CrossRefGoogle Scholar
  29. Beauchamp EG, Drury CF (1991) Ammonium fixation, release, nitrification, and immobilization in high-and low-fixing soils. Soil Sci Soc Am J 55(1):125–129CrossRefGoogle Scholar
  30. Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol 181(2):413–423CrossRefGoogle Scholar
  31. Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick B R (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37(2):241–250Google Scholar
  32. Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz KJ (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47(7):642–652CrossRefGoogle Scholar
  33. Beneduzi A, Peres D, Vargas LK, Bodanese-Zanettini MH, Passaglia LM (2008) Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing bacilli isolated from rice fields in South Brazil. Appl Soil Ecol 39(3):311–320CrossRefGoogle Scholar
  34. Beneduzi A, Ambrosini A, Passaglia LM (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35(4):1044–1051CrossRefPubMedPubMedCentralGoogle Scholar
  35. Bhattacharya PN, Jha DK (2012) Plant growth promoting rhizobacteria (PGPR): Emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350CrossRefGoogle Scholar
  36. Björk RG, Björkman MP, Andersson MX, Klemedtsson L (2008) Temporal variation in soil microbial communities in Alpine tundra. Soil Biol Biochem 40(1):266–268CrossRefGoogle Scholar
  37. Blodgett JT, Swart WJ (2002) Infection, colonization, and disease of Amaranthus hybridus leaves by the Alternaria tenuissima group. Plant Dis 86(11):1199–1205CrossRefGoogle Scholar
  38. Blodgett JT, Swart WJ, Louw SV (2004) Identification of fungi and fungal pathogens associated with Hypolixus haerens and decayed and cankered stems of Amaranthus hybridus. Plant Dis 88(4):333–337CrossRefGoogle Scholar
  39. Blodgett JT, Swart WJ, Louw SV (1998) First report of Fusarium sambucinum, F. oxysporum, and F. subglutinans associated with stem decay of Amaranthus hybridus in South Africa. Plant Dis 82(9):1062–1062Google Scholar
  40. Blum JE, Bartha R (1980) Effect of salinity on methylation of mercury. Bull Environ Cont Toxicol 25(1):404–408CrossRefGoogle Scholar
  41. Blumer C, Haas D (2000) Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Arch Microbiol 173(3):170–177CrossRefGoogle Scholar
  42. Bonafaccia G, Marocchini M, Kreft I (2003) Composition and technological properties of the flour and bran from common and tartary buckwheat. Food Chem 80(1):9–15CrossRefGoogle Scholar
  43. Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65(5):497–503CrossRefGoogle Scholar
  44. Boukhalfa H, Crumbliss AL (2002) Chemical aspects of siderophore mediated iron transport. Biometals 15(4):325–339CrossRefGoogle Scholar
  45. Brajdes C, Vizireanu C (2012) Sprouted buckwheat an important vegetable source of antioxidants. The Annals of the University of Dunarea de Jos of Galati. Fascicle VI. Food Technol 36(1):53Google Scholar
  46. Branda SS, Chu F, Kearns DB, Losick R, Kolter R (2006) A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol 59(4):1229–1238CrossRefGoogle Scholar
  47. Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56(11):317–333CrossRefGoogle Scholar
  48. Bungla PS, Tewari LM, Bhatt ID, Rawal RS, Kishor K (2012) The traditional food system of Kuloor watershed of Kumaon Himalaya, India. Afr J Food Sci 6(23):546–553Google Scholar
  49. Carson KC, Holliday S, Glenn AR, Dilworth MJ (1992) Siderophore and organic acid production in root nodule bacteria. Arch Microbiol 157(3):264–271CrossRefGoogle Scholar
  50. Castric PA, Deal CD (1994) Differentiation of Pseudomonas aeruginosa pili based on sequence and B-cell epitope analyses. Infect Immun 62(2):371–376PubMedPubMedCentralGoogle Scholar
  51. Castrillón-Arbeláez PA, Frier JPD (2016) Secondary Metabolism in Amaranthus spp. A genomic approach to understand its diversity and responsiveness to stress in marginally studied crops with high agronomic potential. In: Abiotic and biotic stress in plants-recent advances and future perspectives.
  52. Chan CL, Gan RY, Corke H (2016) The phenolic composition and antioxidant capacity of soluble and bound extracts in selected dietary spices and medicinal herbs. Int J Food Sci Technol 51(3):565–573CrossRefGoogle Scholar
  53. Chandra S, Askari K, Kumari M (2018) Optimization of indole acetic acid production by isolated bacteria from Stevia rebaudiana rhizosphere and its effects on plant growth. J Gene Eng Biotechnol 16(2):581–586CrossRefGoogle Scholar
  54. Chandra D, Chandra S, Sharma AK (2016) Review of Finger millet (Eleusine coracana (L.) Gaertn): a power house of health benefiting nutrients. Food Sci Hum Welln 5(3):149–155Google Scholar
  55. Chaturvedi M, Sharma C, Tiwari M (2013) Effects of pesticides on human beings and farm animals: a case study. Res J Chem Environ Sci 1(3):14–19Google Scholar
  56. Chauhan AK, Maheshwari DK, Dheeman S, Bajpai VK (2017) Termitarium-inhabiting Bacillus spp. enhanced plant growth and bioactive component in turmeric (Curcuma longa L.). Curr Microbiol 74(2):184–92Google Scholar
  57. Chauhan RS, Singhal L (2006) Harmful effects of pesticides and their control through cowpathy. Int J Cow Sci 2(1):61–70Google Scholar
  58. Chen F, Wang M, Zheng Y, Luo J, Yang X, Wang X (2010) Quantitative changes of plant defense enzymes and phytohormone in biocontrol of cucumber Fusarium wilt by Bacillus subtilis B579. World J Microbiol Biotechnol 26(4):675–684CrossRefGoogle Scholar
  59. Chen WQ, Swart WJ (2001) Genetic variation among Fusarium oxysporum isolates associated with root rot of Amaranthus hybridus in South Africa. Plant Dis 85(10):1076–1080CrossRefGoogle Scholar
  60. Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53(7):912–918CrossRefGoogle Scholar
  61. Cho HS, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney DW Jr, Leahy DJ (2003) Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature 421(6924):756CrossRefGoogle Scholar
  62. Chopra R, Pasi S (2002) Where are the empty thalis in Uttarakhand. District Level Food Insecurity Analysis of Uttarakhand. People’s Science Institute, DehradunGoogle Scholar
  63. Choudhary DK, Johri BN, Prakash A (2008) Volatiles as priming agents that initiate plant growth and defence responses. Curr Sci 10:595–604Google Scholar
  64. Clarke-Harris D, Fleischer SJ, Fuller C, Bolton J (2004) Evaluation of the efficacy of new chemistries for controlling major lepidoptera pests on vegetable amaranth in Jamaica. CARDI Rev 4:12–19Google Scholar
  65. Dalai RC (1977) Soil organic phosphorus, vol 29. Advances in Agronomy, Academic Press, pp 83–117Google Scholar
  66. Das S (2015) Amaranthus parganensis (Amaranthaceae), a new species from West Bengal, India. Novon 23(4):406–410CrossRefGoogle Scholar
  67. Davies PJ (2010) The plant hormones: their nature, occurrence, and functions. In: Plant hormones. Springer, Dordrecht, pp 1–15Google Scholar
  68. De La Rosa AB, Fomsgaard IS, Laursen B, Mortensen AG, Olvera-Martínez L, Silva-Sánchez C, Mendoza-Herrera A, González-Castañeda J, De León-Rodríguez A (2009) Amaranth (Amaranthus hypochondriacus) as an alternative crop for sustainable food production: Phenolic acids and flavonoids with potential impact on its nutraceutical quality. J Cereal Sci 49(1):117–121CrossRefGoogle Scholar
  69. de Santiago A, Quintero JM, Avilés M, Delgado A (2011) Effect of Trichoderma asperellum strain T34 on iron, copper, manganese, and zinc uptake by wheat grown on a calcareous medium. Plant Soil 342(1–2):97–104CrossRefGoogle Scholar
  70. Delfim J, Schoebitz M, Paulino L, Hirzel J, Zagal E (2018) Phosphorus availability in wheat, in volcanic soils inoculated with phosphate-solubilizing Bacillus thuringiensis. Sustainability 10(1):144CrossRefGoogle Scholar
  71. Deshwal VK, Dubey RC, Maheshwari DK (2003) Isolation of plant growth-promoting strains of Bradyrhizobium (Arachis) sp. with biocontrol potential against Macrophomina phaseolina causing charcoal rot of peanut. Curr Sci 443–448Google Scholar
  72. Devi PB, Vijayabharathi R, Sathyabama S, Malleshi NG, Priyadarisini VB (2014) Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: a review. J Food Sci Technol 51(6):1021–40Google Scholar
  73. Dey RKKP, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159(4):371–394Google Scholar
  74. Dhangrah VK, Mandal J, Bhat JS (2015) Heritable variation and predicted selection response of green yield and its component traits in vegetable amaranth. Int J Bio-res Environ Agric Sci 1(4):146–152Google Scholar
  75. Dheeman S, Maheshwari DK, Agarwal M, Dubey RC, Aeron A, Kim K, Bajpai VK (2017) Polyphasic and functional diversity of high altitude culturable Bacillus from rhizosphere of Eleusine coracana (L.) Gaertn. Appl Soil Ecol 110:127–136CrossRefGoogle Scholar
  76. Dida MM, Ramakrishnan S, Bennetzen JL, Gale MD, Devos KM (2007) The genetic map of finger millet, Eleusine coracana. Theor Appl Genet 114(2):321–332CrossRefGoogle Scholar
  77. Dodok L, Modhir AA, Buchtova V, Halasova G, Polaček I (1997) Importance and utilization of amaranth in food industry. Part 2. Composition of amino acids and fatty acids. Food/Nahrung 41(2):108–110Google Scholar
  78. Dogra D (2010) Biochemical evaluation of buck wheat Fagopyrum esculentum Moench genotypes. PhD thesis. CSK Himachal Pradesh Krishi Vishwavidyalaya HP, IndiaGoogle Scholar
  79. Dowling DN, O’Gara F (1994) Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trend Biotechnol 12(4):133–141CrossRefGoogle Scholar
  80. Dubey P, Gupta GP (2012) Synergistic and antagonistic interactions among endophytic bacterial isolates of Vigna mungo (L.) Hepper. J Curr Perspect Appl Microbiol 1(2):1–12Google Scholar
  81. Dubey RC, Khare S, Kumar P, Maheshwari DK (2014) Combined effect of chemical fertilisers and rhizosphere-competent Bacillus subtilis BSK17 on yield of Cicer arietinum. Arch Phytopathol Plant Protec 47(19):2305–2318CrossRefGoogle Scholar
  82. Eggum BO, Kreft I, Javornik B (1980) Chemical composition and protein quality of buckwheat (Fagopyrum esculentum Moench). Plant Food Hum Nutr 30(3–4):175–179Google Scholar
  83. Eser D, Geçit HH (2010) Ekoloji. AÜ Ziraat Fakültesi 1584Google Scholar
  84. Ezawa T, Smith SE, Smith FA (2002) P metabolism and transport in AM fungi. Plant Soil 244(1–2):221–230CrossRefGoogle Scholar
  85. Fernando WD, Nakkeeran S, Zhang Y (2005) Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant diseases. In: PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp. 67–109Google Scholar
  86. Friedman L, Kolter R (2004) Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol Microbiol 51(3):675–690CrossRefGoogle Scholar
  87. García AA, Huato MÁD, Lara MH, Sáenz-de-Cabezón FJ, Pérez-Moreno I, Marco-Mancebón V, López-Olguín JF (2011) Insect occurrence and losses due to phytophagous species in the amaranth Amaranthus hypocondriacus L. crop in Puebla, Mexico. African J Agric Res 6(27):5924–5929Google Scholar
  88. Glenn EP, Anday T, Chaturvedi R, Martinez-Garcia R, Pearlstein S, Soliz D et al (2013) Three halophytes for saline-water agriculture: An oilseed, a forage and a grain crop. Environ Exp Bot 92:110–121CrossRefGoogle Scholar
  89. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41(2):109–117CrossRefGoogle Scholar
  90. Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190(1):63–68CrossRefGoogle Scholar
  91. Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria. In: Phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington, DC, pp 197–203Google Scholar
  92. Gorinstein S, Pawelzik E, Delgado-Licon E, Haruenkit R, Weisz M, Trakhtenberg S (2002) Characterisation of pseudocereal and cereal proteins by protein and amino acid analyses. J Sci Food Agri 82(8):886–891CrossRefGoogle Scholar
  93. Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food Agric 2(1):1127500Google Scholar
  94. Gouda S, Nayak S, Bishwakarma S, Kerry RG, Das G, Patra JK (2017) role of microbial technology in agricultural sustainability. Microbial Biotechnology. Springer, Singapore, pp 181–202CrossRefGoogle Scholar
  95. Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412CrossRefGoogle Scholar
  96. Grunewald W, Van Noorden G, Van Isterdael G, Beeckman T, Gheysen G, Mathesius U (2009) Manipulation of auxin transport in plant roots during Rhizobium symbiosis and nematode parasitism. Plant Cell 21(9):2553–2562CrossRefPubMedPubMedCentralGoogle Scholar
  97. Guerinot ML, Meidl EJ, Plessner O (1990) Citrate as a siderophore in Bradyrhizobium japonicum. J Bacteriol 172(6):3298–3303CrossRefPubMedPubMedCentralGoogle Scholar
  98. Gundersen C, Ziliak JP (2015) Food insecurity and health outcomes. Health Aff 34(11):1830–1839CrossRefGoogle Scholar
  99. Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7(2):096–102Google Scholar
  100. Gupta RP, Kalia A, Kapoor S (2007) Bioinoculants: a step towards sustainable agriculture. New India Publishing, New Delhi, IndiaGoogle Scholar
  101. Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Rev Microbiol 3(4):307–319CrossRefGoogle Scholar
  102. Hadimani NA, Malleshi NG (1993) Studies on milling, physico-chemical properties, nutrient composition and dietary fibre content of millets. J Food Sci Technol (India) 30(1):17–20Google Scholar
  103. Hafeez FY, Yasmin S, Ariani D, Zafar Y, Malik KA (2006) Plant growth-promoting bacteria as biofertilizer. Agron Sustain Dev 26(2):143–150CrossRefGoogle Scholar
  104. Haggag WM, Timmusk S (2008) Colonization of peanut roots by biofilm-forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. J Appl Microbiol 104(4):961–969CrossRefGoogle Scholar
  105. He Z, Griffin TS, Honeycutt CW (2004) Enzymatic hydrolysis of organic phosphorus in swine manure and soil. J Environ Qual 33(1):367–372CrossRefGoogle Scholar
  106. Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27(5):637–657CrossRefGoogle Scholar
  107. Hilu KW, De Wet JMJ (1976) Domestication of Eleusine coracana. Econ Bot 30(3):199–208CrossRefGoogle Scholar
  108. Honma K, Inagaki S, Okuda K, Kuramitsu HK, Sharma A (2007) Role of a Tannerella forsythia exopolysaccharide synthesis operon in biofilm development. Microb Pathog 42(4):156–166CrossRefGoogle Scholar
  109. Huang X, Yang S, Gong J, Zhao Y, Feng Q, Gong H et al (2015) Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nat Comm 6:6258CrossRefGoogle Scholar
  110. Hussain A, Hasnain S (2009) Cytokinin production by some bacteria: its impact on cell division in cucumber cotyledons. Afr J Microbiol Res 3(11):704–712Google Scholar
  111. Idris EE, Iglesias DJ, Talon M, Borriss R (2007) Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant Microb Interact 20(6):619–626CrossRefGoogle Scholar
  112. Idriss EE, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H et al (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effecta. Microbiology 148(7):2097–2109CrossRefGoogle Scholar
  113. Ikeda K, Matsuda Y, Katsumaru A, Teranishi M, Yamamoto T, Kishidai M (1986) Factors affecting protein digestibility in soybean foods. Electrophoresis 10(100):1–3Google Scholar
  114. Ikeda S, Yamaguchi Y (1993) Zinc contents in various samples and products of buckwheat. Buckwheat Newslett 1:1–3Google Scholar
  115. Ikeda S, Yamashita Y (1994) Buckwheat as a dietary source of zinc, copper and manganese. Fagopyrum 14:29–34Google Scholar
  116. Ikeda S, Edotani M, Naito S (1990) Zinc in buckwheat. Fagopyrum 10:51–56Google Scholar
  117. James B, Atcha-Ahowe C, Godonou I, Baimey H, Goergen H, Sikirou R, Toko M (2010) Integrated pest management in vegetable production: A guide for extension workers in West African International Institute Tropical Agriculture (IITA), Ibadan, Nigeria, p 120Google Scholar
  118. Jimenez-Aguilar DM, Grusak MA (2017) Minerals, vitamin C, phenolics, flavonoids and antioxidant activity of Amaranthus leafy vegetables. J Food Compos Anal 58:33–39CrossRefGoogle Scholar
  119. Kadaikunnan S, Rejiniemon TS, Khaled JM, Alharbi NS, Mothana R (2015) In-vitro antibacterial, antifungal, antioxidant and functional properties of Bacillus amyloliquefaciens. Annal Clin Microbiol Antimicrob 14(1):9–10CrossRefGoogle Scholar
  120. Kadyan S, Panghal M, Kumar S, Singh K, Yadav JP (2013) Assessment of functional and genetic diversity of aerobic endospore forming Bacilli from rhizospheric soil of Phyllanthus amarus L. World J Microbiol Biotechnol 29(9):1597–1610CrossRefGoogle Scholar
  121. Kagali RN, Kioko EN, Osiemo Z, Muya S, Wachera C (2013) Insect abundance and diversity on cultivated Amaranthus spp. (Amaranthacea) in Meru County, Kenya. American Int J Contemp Res 3(7):111–113Google Scholar
  122. Kamala N, Gokulapalan C, Nair MC (1996) A new foliar blight of Amaranthus caused by R. solani. Indian Phytopathol 49:407Google Scholar
  123. Kanensi OJ, Ochola S, Gikonyo NK, Makokha A (2013) Effect of steeping and germination on the diastatic activity and sugar content in amaranth grains and viscosity of porridge. J Agric Food Technol 3(1):1–7Google Scholar
  124. Katiyar V, Goel R (2003) Solubilization of inorganic phosphate and plant growth promotion by cold tolerant mutants of Pseudomonas fluorescens. Microbiol Res 158(2):163–168CrossRefGoogle Scholar
  125. Kaur J, Khanna V, Kumari P, Sharma R (2015) Influence of psychrotolerant plant growth-promoting rhizobacteria (PGPR) as coinoculants with Rhizobium on growth parameters and yield of lentil (Lens culinaris Medikus). Afr J Microbiol Res 9(4):258–264CrossRefGoogle Scholar
  126. Kavita K, Singh VK, Mishra A, Jha B (2014) Characterisation and anti-biofilm activity of extracellular polymeric substances from Oceanobacillus iheyensis. Carbo Polym 101:29–35CrossRefGoogle Scholar
  127. Kayashita J, Shimaoka I, Nakajoh M, Kishida N, Kato N (1999) Consumption of a buckwheat protein extract retards 7, 12-dimethylbenz [α] anthracene-induced mammary carcinogenesis in rats. Biosci Biotechnol Biochem 63(10):1837–1839CrossRefGoogle Scholar
  128. Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilizing fungi–current perspective. Arch Agron Soil Sci 56(1):73–98CrossRefGoogle Scholar
  129. Khatri D, Durgapal A, Joshi PK (2016) Biofertilization enhances productivity and nutrient uptake of foxtail millet plants. J Crop Improv 30(1):32–46CrossRefGoogle Scholar
  130. Kinsinger RF, Shirk MC, Fall R (2003) Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. J Bacteriol 185(18):5627–5631CrossRefPubMedPubMedCentralGoogle Scholar
  131. Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94(11):1259–1266CrossRefGoogle Scholar
  132. Knowles CJ, Bunch AW (1986) Microbial cyanide metabolism. Adv Microb Physiol 27(27):73–111CrossRefGoogle Scholar
  133. Kraemer SM (2004) Iron oxide dissolution and solubility in the presence of siderophores. Aqua Sci 66(1):3–18CrossRefGoogle Scholar
  134. Kreft I, Skrabanja V (2002) Nutritional properties of starch in buckwheat noodles. J Nutr Sci Vitaminol 48(1):47–50CrossRefGoogle Scholar
  135. Kremer RJ, Souissi T (2001) Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Curr Microbiol 43(3):182–186CrossRefGoogle Scholar
  136. Kumar S, Suyal DC, Dhauni N, Bhoriyal M, Goel R (2014) Relative plant growth promoting potential of Himalayan Psychrotolerant Pseudomonas jesenii strain MP1 against native Cicer arietinum (L.)., Vigna mungo (L.) Hepper; Vigna radiata (L.) Wilczek., Cajanus cajan (L.) Millsp. and Eleusine coracana (L.) Gaertn. African J Microbiol Res 8(50):3931–43Google Scholar
  137. Kumar V, Singh P, Jorquera MA, Sangwan P, Kumar P, Verma AK, Agrawal S (2013) Isolation of phytase-producing bacteria from Himalayan soils and their effect on growth and phosphorus uptake of Indian mustard (Brassica juncea). World J Microbiol Biotechnol 29(8):1361–1369CrossRefGoogle Scholar
  138. Kumar A, Kumar A, Devi S, Patil S, Payal C, Negi S (2012a) Isolation, screening and characterization of bacteria from Rhizospheric soils for different plant growth promotion (PGP) activities: an in vitro study. Rec Res Sci Technol 4(1):1Google Scholar
  139. Kumar A, Palni LMS, Sood A, Sharma M, Palni UT, Gupta AK (2002) Heat-shock induced somatic embryogenesis in callus cultures of gladiolus in the presence of high sucrose. J Horti Sci Biotechnol 77(1):73–78CrossRefGoogle Scholar
  140. Kumar A, Sharma S, Mishra S (2009) Effect of alkalinity on growth performance of Jatropha curcas inoculated with PGPR and AM fungi. J Phytol 1(3):1Google Scholar
  141. Kumar P, Dubey RC, Maheshwari DK (2012b) Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol Res 167(8):493–499CrossRefGoogle Scholar
  142. Kundan R, Pant G, Jadon N, Agrawal PK (2015) Plant growth promoting rhizobacteria: mechanism and current prospective. J Fertil Pest 6:155. Scholar
  143. Kuzyakov Y (2002) Factors affecting rhizosphere priming effects. J Plant Nutr Soil Sci 165(4):382–396CrossRefGoogle Scholar
  144. Lamacchia C, Camarca A, Picascia S, Di Luccia A, Gianfrani C (2014) Cereal-based gluten-free food: how to reconcile nutritional and technological properties of wheat proteins with safety for celiac disease patients. Nutrients 6(2):575–590CrossRefPubMedPubMedCentralGoogle Scholar
  145. Lambrecht M, Okon Y, Broek AV, Vanderleyden J (2000) Indole-3-acetic acid: a reciprocal signalling molecule in bacteria–plant interactions. Trend Microbiol 8(7):298–300CrossRefGoogle Scholar
  146. Lawrence G, Richards CA, Cheshire L (2004) The environmental enigma: why do producers professing stewardship continue to practice poor natural resource management? J Environ Pol Plan 6(3–4):251–270CrossRefGoogle Scholar
  147. Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL et al (2015) Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci 112(35):10967–10972CrossRefGoogle Scholar
  148. Li SQ, Zhang QH (2001) Advances in the development of functional foods from buckwheat. Crit Rev Food Sci Nutr 41(6):451–464CrossRefGoogle Scholar
  149. Li T, Bai R, Liu J (2008) Distribution and composition of extracellular polymeric substances in membrane-aerated biofilm. J Biotechnol 135(1):52–57CrossRefGoogle Scholar
  150. Liles MR, Scheel TA, Cianciotto NP (2000) Discovery of a nonclassical siderophore, legiobactin, produced by strains of Legionella pneumophila. J Bacteriol 182(3):749–757CrossRefPubMedPubMedCentralGoogle Scholar
  151. Liu C, Yang Z, He P, Munir S, Wu Y, Ho H, He Y (2018) Deciphering the bacterial and fungal communities in clubroot-affected cabbage rhizosphere treated with Bacillus subtilis XF-1. Agric Ecosyst Environ 256:12–22CrossRefGoogle Scholar
  152. Liu F, Xing S, Ma H, Du Z, Ma B (2013) Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl Microbiol Biotechnol 97(20):9155–9164CrossRefGoogle Scholar
  153. Liu Z, Ishikawa W, Huang X, Tomotake H, Kayashita J, Watanabe H, Kato N (2001) Research Communication: A buckwheat protein product suppresses 1, 2-Dimethylhydrazine–induced colon carcinogenesis in rats by reducing cell proliferation. J Nutr 131(6):1850–1853CrossRefGoogle Scholar
  154. Lulai EC, Suttle JC (2004) The involvement of ethylene in wound-induced suberization of potato tuber (Solanum tuberosum L.): a critical assessment. Postharvest Biol Technol 34(1):105–112Google Scholar
  155. Luthar Z (1992) Polyphenol classification and tannin content of buckwheat seeds (Fagopyrum esculentum Moench). Fagopyrum 12:36–42Google Scholar
  156. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18(3):268–281CrossRefPubMedPubMedCentralGoogle Scholar
  157. Magkos F, Arvaniti F, Zampelas A (2003) Organic food: nutritious food or food for thought? A review of the evidence. Int J Food Sci and Nutr 54(5):357–371CrossRefGoogle Scholar
  158. Maheshwari DK, Dubey RC, Agarwal M, Dheeman S, Aeron A, Bajpai VK (2015a) Carrier based formulations of biocoenotic consortia of disease suppressive Pseudomonas aeruginosa KRP1 and Bacillus licheniformis KRB1. Ecol Eng 81:272–277CrossRefGoogle Scholar
  159. Maheshwari DK (2010) Plant health and growth promoting bacteria. Microbiology Monograph. Springer, Heidelberg, GermanyGoogle Scholar
  160. Maheshwari DK (2011a) Bacteria in agrobiology: crop ecosystem. Springer, Heidelberg, GermanyCrossRefGoogle Scholar
  161. Maheshwari DK (2011b) Bacteria in agrobiology: plant growth responses. Springer, Heidelberg, GermanyCrossRefGoogle Scholar
  162. Maheshwari DK (2011c) Bacteria in agrobiology: plant nutrient management. Springer, Heidelberg, GermanyCrossRefGoogle Scholar
  163. Maheshwari DK (2015) Halophiles- biodiversity and sustainable exploitation. Springer, Gewerbestrasse, SwitzerlandCrossRefGoogle Scholar
  164. Maheshwari DK (2016) Application of plant microbes in enhancing agricultural productivity: Success stories and bottlenecks–Presidential Address. In: Maheshwari DK (ed) Abstract Book, 103rd Indian Science Congress. Mysore, University of Mysore, Mysore, pp 5–38Google Scholar
  165. Maheshwari DK, Dheeman S, Agarwal M (2015b) Phytohormone-producing PGPR for sustainable agriculture. In: Maheshwari DK (ed) Bacterial metabolites in sustainable agroecosystem. Springer, Cham, pp 159–182CrossRefGoogle Scholar
  166. Maheshwari DK, Dubey RC, Aeron A, Kumar B, Kumar S, Tewari S, Arora NK (2012) Integrated approach for disease management and growth enhancement of Sesamum indicum L. utilizing Azotobacter chroococcum TRA2 and chemical fertilizer. World J Microbiol Biotechnol 28(10):3015–3024Google Scholar
  167. Maheshwari DK, Saraf M, Aeron A (2013) Bacteria in Agrobiology: crop productivity. Springer Science & Business Media, Springer, Heidelberg, GermanyGoogle Scholar
  168. Mallick I, Bhattacharyya C, Mukherji S, Dey D, Sarkar SC, Mukhopadhyay UK, Ghosh A (2018) Effective rhizoinoculation and biofilm formation by arsenic immobilizing halophilic plant growth promoting bacteria (PGPB) isolated from mangrove rhizosphere: a step towards arsenic rhizoremediation. Sci Total Environ 610:1239–1250CrossRefGoogle Scholar
  169. Maloney SE (2001) Pesticide degradation. British mycological society symposium series 23:188–223Google Scholar
  170. Mandal N, Das PK (2002) Intra-and interspecific genetic diversity in grain Amaranthus using random amplified polymorphic DNA markers. Plant Tissue Cult 12(1):49–56Google Scholar
  171. Marshall VM, Lewis MM, Ostendorf B (2012) Buffel grass (Cenchrus ciliaris) as an invader and threat to biodiversity in arid environments: a review. J Arid Environ 78:1–12CrossRefGoogle Scholar
  172. Mayes S, Massawe FJ, Alderson PG, Roberts JA, Azam-Ali SN, Hermann M (2011) The potential for underutilized crops to improve security of food production. J Exp Bot 63:1075–1079CrossRefGoogle Scholar
  173. Mburu MW, Gikonyo NK, Kenji GM, Mwasaru AM (2012) Nutritional and functional properties of a complementary food based on Kenyan amaranth grain (Amaranthus cruentus). Afr J Food Agric Nutr Dev 12(2):5959–5977Google Scholar
  174. Meena SK, Rakshit A, Meena VS (2016a) Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum aestivum L.) under greenhouse conditions. Biocatal Agric Biotechnol 6:68–75CrossRefGoogle Scholar
  175. Meena VS, Bahadur I, Maurya BR, Kumar A, Meena RK, Meena SK, Verma JP (2016b) Potassium-solubilizing microorganism in evergreen agriculture: an overview. Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 1–20CrossRefGoogle Scholar
  176. Mehta P, Walia A, Kulshrestha S, Chauhan A, Shirkot CK (2015) Efficiency of plant growth-promoting P-solubilizing Bacillus circulans CB7 for enhancement of tomato growth under net house conditions. J Basic Microbiol 55(1):33–44CrossRefGoogle Scholar
  177. Mehta PS, Negi KS, Ojha SN (2010) Native plant genetic resources and traditional foods of Uttarakhand Himalaya for sustainable food security and livelihood. Indian J Natur Prod Resour 1(1):89–96Google Scholar
  178. Mielich-Süss B, Lopez D (2015) Molecular mechanisms involved in Bacillus subtilis biofilm formation. Environ Microbiol 17(3):555–565CrossRefGoogle Scholar
  179. Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71(3):413–451CrossRefPubMedPubMedCentralGoogle Scholar
  180. Mihail JD and Champaco ER (1993) Diseases of Amaranthus spp. caused by Pythium aphanidermatum and Macrophomina phaseolina. Can J Botany 71(9):1219–1223Google Scholar
  181. Miraj S (2016) A Medicinal plant with antioxidant activity in Iranian folk medicine: Amaranthus. Der Pharm Lett 8(14):27–30Google Scholar
  182. Mishra PK, Bisht SC, Mishra S, Selvakumar G, Bisht JK, Gupta HS (2012) Coinoculation of Rhizobium leguminosarum-PR1 with a cold tolerant Pseudomonas sp. improves iron acquisition, nutrient uptake and growth of field pea (Pisum sativum L.). J Plant Nutri 35(2):243–256Google Scholar
  183. Mlakar SG, Turinek M, Jakop M, Bavec M, Bavec F (2009) Nutrition value and use of grain amaranth: potential future application in bread making. Agricultura 6(4):1Google Scholar
  184. Morrone D, Chambers J, Lowry L, Kim G, Anterola A, Bender K, Peters RJ (2009) Gibberellin biosynthesis in bacteria: Separate ent-copalyl diphosphate and ent-kaurene synthases in Bradyrhizobium japonicum. FEBS Lett 583(2):475–480CrossRefGoogle Scholar
  185. Muis A, Quimio AJ (2016) Biological control of banded leaf and sheath blight disease (Rhizoctonia solani Kuhn) in corn with formulated Bacillus subtilis BR23. Indo J Agric Sci 7(1):1–7CrossRefGoogle Scholar
  186. Mureithi DM, Komi FK, Ekesi S, Meyhöfer R (2017) Important arthropod pests on leafy Amaranth (Amaranthus viridis, A. tricolor and A. blitum) and broad-leafed African nightshade (Solanum scabrum) with a special focus on host-plant ranges. Afr J Horti Sci 11:1–17Google Scholar
  187. Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014a) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Advances 32(2):429–448CrossRefGoogle Scholar
  188. Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014b) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32(2):429–448CrossRefGoogle Scholar
  189. Nadeem SM, Zahir ZA, Naveed M, Asghar HN, Arshad M (2010) Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat. Soil Sci Soc Am J 74(2):533–542CrossRefGoogle Scholar
  190. Nagai T, Sakai M, Inoue R, Inoue H, Suzuki N (2011) Antioxidative activities of some commercially honeys, royal jelly, and propolis. Food Chem 75(2):237–240CrossRefGoogle Scholar
  191. Nair CB, Anith NK (2009) Efficacy of acibenzolar-S-methyl and rhizobacteria for the management of foliar blight disease of amaranth. Int J Trop Agric 47(1):43–47Google Scholar
  192. Navarro S, Vela N, Navarro G (2007) An overview on the environmental behaviour of pesticide residues in soils. Spanish J Agric Res 3:357–375CrossRefGoogle Scholar
  193. Nelson LM (2004) Plant growth promoting rhizobacteria (PGPR): prospects for new inoculants. Plant Manag Netw.
  194. Nenwani V, Doshi P, Saha T, Rajkumar S (2010) Isolation and characterization of a fungal isolate for phosphate solubilization and plant growth promoting activity. J Yeast Fungal Res 1(1):009–014Google Scholar
  195. NFSB (2013) National food security bill. The Gazette of India: extraordinary, New Delhi, the 10th September, 2013/Bhadra 19, 1935 (Saka)
  196. NFSM (2012) National food security mission, 12th Five Year Plan. NFSM-Coarse cereals.
  197. Niranjana M, Kumar JSA (2017) Grain amaranth (Amaranthus sp.)-an underutilized crop species for nutritional security and climate resilience. Mysore J Agric Sci 51(1):12–20Google Scholar
  198. Nyvall RF (1989) Diseases of cotton. In: Field crop diseases handbook Springer, Boston, MA, pp 171–210Google Scholar
  199. Odukkathil G, Vasudevan N (2013) Toxicity and bioremediation of pesticides in agricultural soil. Rev Env Sci Biotech 12(4):421–444CrossRefGoogle Scholar
  200. Ortíz-Castro R, Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behavior 4(8):701–712CrossRefGoogle Scholar
  201. Østerberg JT, Xiang W, Olsen LI, Edenbrandt AK, Vedel SE, Christiansen A et al (2017) Accelerating the domestication of new crops: feasibility and approaches. Trend Plant Sci 22(5):373–384CrossRefGoogle Scholar
  202. O’sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56(4):662–676Google Scholar
  203. Othim STO, Kahuthia-Gathu R, Akutse KS, Foba CN, Fiaboe KKM (2018) Seasonal occurrence of amaranth Lepidopteran defoliators and effect of attractants and amaranth lines in their management. J Appl Entomol 2018:12513. Scholar
  204. Pandey C, Dheeman S, Negi YK, Maheshwari DK (2018) Differential response of native Bacillus spp. isolates from agricultural and forest soils in growth promotion of Amaranthus hypochondriacus. Biotechnol Res 4(1):54–61Google Scholar
  205. Pandey N, Gupta B, Pathak GC (2013) Foliar application of Zn at flowering stage improves plant’s performance, yield and yield attributes of black gram. Indian J Exp Biol 51:548–555PubMedGoogle Scholar
  206. Pandey P, Kang SC, Maheshwari DK (2005) Isolation of endophytic plant growth promoting Burkholderia sp. MSSP from root nodules of Mimosa pudica. Curr Sci 177–180Google Scholar
  207. Pane C, Zaccardelli M (2015) Evaluation of Bacillus strains isolated from solanaceous phylloplane for biocontrol of Alternaria early blight of tomato. Biol Cont 84:11–18CrossRefGoogle Scholar
  208. Paradkar MM, Irudayaraj J (2002) Rapid determination of caffeine content in soft drinks using FTIR–ATR spectroscopy. Food Chem 78(2):261–266CrossRefGoogle Scholar
  209. Parmar JK, Patel JJ (2009) Effect of organic and inorganic nitrogen and biofertilizer on nutrient content and uptake by amaranthus (Amaranthus hypochondriacus L.). Asian J Soil Sci 4(1):135–138Google Scholar
  210. Pasek MA, Lauretta DS (2005) Aqueous corrosion of phosphide minerals from iron meteorites: a highly reactive source of prebiotic phosphorus on the surface of the early Earth. Astrobiology 5(4):515–535CrossRefGoogle Scholar
  211. Patel DK, Kanungo VK (2010) Phytoremediation potential of duckweed (lemnaminor l: a tiny aquatic plant) in the removal of pollutants from domestic wastewater with special reference to nutrients. Bioscan 5(3):355–358Google Scholar
  212. Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118(1):10–15CrossRefGoogle Scholar
  213. Perales-Sánchez JX, Reyes-Moreno C, Gómez-Favela MA, Milán-Carrillo J, Cuevas-Rodríguez EO, Valdez-Ortiz A, Gutiérrez-Dorado R (2014) Increasing the antioxidant activity, total phenolic and flavonoid contents by optimizing the germination conditions of amaranth seeds. Plant Food Hum Nutr 69(3):196–202CrossRefGoogle Scholar
  214. Pingale SS, Virkar PS (2013) Study of influence of phosphate dissolving micro-organisms on yield and phosphate uptake by crops. Euro J Exp Biol 3(2):191–193Google Scholar
  215. Písaříková B, Kráčmar S, Herzig I (2005) Amino acid contents and biological value of protein in various amaranth species. Czech J Anim Sci 50(4):169–174CrossRefGoogle Scholar
  216. Plessner O, Klapatch T, Guerinot ML (1993) Siderophore utilization by Bradyrhizobium japonicum. Appl Environ Microbiol 59(5):1688–1690PubMedPubMedCentralGoogle Scholar
  217. Podile AR, Kishore GK. (2007) Plant growth-promoting rhizobacteria. In: Plant-associated bacteria. Springer, Dordrecht, pp 195–230Google Scholar
  218. Prakash B, Veeregowda BM, Krishnappa G (2003) Biofilms: a survival strategy of bacteria. Curr Sci 1299–1307Google Scholar
  219. Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants. Springer International Publishing, pp 247–260Google Scholar
  220. Priyadarsini P (2003) Ecofriendly management of Rhizoctonia leaf blight of amaranthus. MSc (Ag.) thesis, Kerala Agricultural University, Thrissur, IndiaGoogle Scholar
  221. Raina A, Datta A (1992) Molecular cloning of a gene encoding a seed-specific protein with nutritionally balanced amino acid composition from Amaranthus. Proc Natl Acad Sci 89(24):11774–11778CrossRefGoogle Scholar
  222. Rais A, Shakeel M, Malik K, Hafeez FY, Yasmin H, Mumtaz S, Hassan MN (2018) Antagonistic Bacillus spp. reduce blast incidence on rice and increase grain yield under field conditions. Microbiol Res 208:54–62CrossRefGoogle Scholar
  223. Raj SN, Deepak SA, Basavaraju P, Shetty HS, Reddy MS, Kloepper JW (2003) Comparative performance of formulations of plant growth promoting rhizobacteria in growth promotion and suppression of downy mildew in pearl millet. Crop Protec 22(4):579–588CrossRefGoogle Scholar
  224. Ramachandra G, Virupaksha TK, Shadaksharaswamy M (1977) Relation between tannin levels and in vitro protein digestibility in finger millet (Eleusine coracana Gaertn.). J Agric Food Chem 25(5):1101–1104Google Scholar
  225. Raman R, Kuppuswamy G, Krishnamoorthy R (2004) Response of organic mulching practices on weed anagement and yield of cotton. In: 6th IFAOM-Asia scientific conference, p 476Google Scholar
  226. Rangaraj T, Somasundaram EM, Amanullah M, Thirumurugan V, Ramesh S, Ravi S (2007) Effect of Agro-industrial wastes on soil properties and yield of irrigated finger millet (Eleusine coracana L. Gaertn) in coastal soil. Res J Agric Biol Sci 3(3):153–156Google Scholar
  227. Rastogi A, Shukla S (2013) Amaranth: a new millennium crop of nutraceutical values. Crit Rev Food Sci Nutr 53(2):109–125CrossRefGoogle Scholar
  228. Raymond KN, Dertz EA, Kim SS (2003) Enterobactin: an archetype for microbial iron transport. Proc Natl Acad Sci 100(7):3584–3588CrossRefGoogle Scholar
  229. Reetha S, Bhuvaneswari G, Thamizhiniyan P, Mycin TR (2014) Isolation of indole acetic acid (IAA) producing rhizobacteria of Pseudomonas fluorescens and Bacillus subtilis and enhance growth of onion (Allim cepa. L). Int J Curr Microbiol Appl Sci 3(2):568–574Google Scholar
  230. Ribeiro APD, Andrade MC, Bagnato VS, Vergani CE, Primo FL, Tedesco AC, Pavarina AC (2015) Antimicrobial photodynamic therapy against pathogenic bacterial suspensions and biofilms using chloro-aluminum phthalocyanine encapsulated in nanoemulsions. Laser Med Sci 30(2):549–559CrossRefGoogle Scholar
  231. Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Func Plant Biol 28(9):897–906CrossRefGoogle Scholar
  232. Rinu K, Pandey A (2009) Bacillus subtilis NRRL B‐30408 inoculation enhances the symbiotic efficiency of Lens esculenta Moench at a Himalayan location. J Plant Nutr Soil Sci 172(1):134–139Google Scholar
  233. Rodrı́guez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17(4–5):319-339Google Scholar
  234. Rovira AD (1969) Plant root exudates. Botanic Rev 35(1):35–57Google Scholar
  235. Sacherer P, Défago G, Haas D (1994) Extracellular protease and phospholipase C are controlled by the global regulatory gene gacA in the biocontrol strain Pseudomonas fluorescens CHA0. FEMS Microbiol Lett 116(2):155–160CrossRefGoogle Scholar
  236. Safronova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA (2006) Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fertil Soils 42(3):267–272CrossRefGoogle Scholar
  237. Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21(1):30Google Scholar
  238. Sandilya SP, Bhuyan PM, Gogoi DK, Kardong D (2018) Phosphorus solubilization and plant growth promotion ability of rhizobacteria of R. communis L growing in Assam, India. Proc Natl Acad Sci India B: Biol Sci 88(3):959–966Google Scholar
  239. Sanz-Penella JM, Wronkowska M, Soral-Smietana M, Haros M (2013) Effect of whole amaranth flour on bread properties and nutritive value. LWT-Food Sci Technol 50(2):679–685CrossRefGoogle Scholar
  240. Sati P, Dhakar K, Pandey A (2013) Microbial diversity in soil under potato cultivation from cold desert Himalaya, India. ISRN Biodivers 3:2013Google Scholar
  241. Schmitt J, Flemming HC (1999) Water binding in biofilms. Water Sci Technol 39(7):77–82CrossRefGoogle Scholar
  242. Schoebitz M, López MD, Roldán A (2013) Bioencapsulation of microbial inoculants for better soil–plant fertilization. A review. Agron Sustain Dev 33(4):751–765CrossRefGoogle Scholar
  243. Schroth MN, Kloepper JW (1978) Plant growth promoting rhizobacteria on radish. In: Proceedings of the fourth conference plant pathogenic bacteria. Ed Station de Pathogenic Vegetable ET (Phytobacteriologic) INRA Angers, pp 876–882Google Scholar
  244. Sealy RL, Kenerley CM, McWilliams EL (1988) Evaluation of Amaranthus accessions for resistance to damping-off by Pythiurn myriotylutn. Plant Dis 72:985–989CrossRefGoogle Scholar
  245. Sedej I, Sakač M, Mandić A, Mišan A, Tumbas V, Hadnađev M (2011) Assessment of antioxidant activity and rheological properties of wheat and buckwheat milling fractions. J Cereal Sci 54(3):347–353CrossRefGoogle Scholar
  246. Seneviratne G, Jayasekara APDA, De Silva MSDL, Abeysekera UP (2011) Developed microbial biofilms can restore deteriorated conventional agricultural soils. Soil Biol Biochem 43(5):1059–1062CrossRefGoogle Scholar
  247. Shaharoona B, Jamro GM, Zahir ZA, Arshad M, Memon KS (2007) Effectiveness of various Pseudomonas spp. and Burkholderia caryophylli containing ACC-Deaminase for improving growth and yield of wheat (Triticum aestivum I.). J Microbiol Biotechnol 17(8):1300Google Scholar
  248. Shanmugam V, Thakur H, Gupta S (2013) Use of chitinolytic Bacillus atrophaeus strain S2BC-2 antagonistic to Fusarium spp. for control of rhizome rot of ginger. Ann Microbiol 63(3):989–96Google Scholar
  249. Sharma CK, Vishnoi VK, Dubey RC, Maheshwari DK (2018) A twin rhizospheric bacterial consortium induces systemic resistance to a phytopathogen Macrophomina phaseolina in mung bean. Rhizosphere 5:71–75CrossRefGoogle Scholar
  250. Sharma A, Johri BN (2003) Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS sub 9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 158(3):243Google Scholar
  251. Sharma BR, Ambili G (2009) Impact of climate change on water resources and potential adaptations for agriculture in the Indus-Gangetic basin. In: 60th IEC meeting & 5th Asian regional conference on improving in efficiency of irrigation projects through technology upgradation and better operation & maintenance, pp 6–11Google Scholar
  252. Sharma N (2009) Phosphate solubilizing potential of plant growth promoting rhizobacteria (PGPR) isolated from tomato seedlings. Ph.D. Thesis, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan – 173230 H.P. India (accessed on 07.09.2019)Google Scholar
  253. Shevkani K, Singh N, Rana JC, Kaur A (2014) Relationship between physicochemical and functional properties of amaranth (Amaranthus hypochondriacus) protein isolates. Int J Food Sci Tech 49(2):541–550CrossRefGoogle Scholar
  254. Shirani M, Raeisi R, Heidari-Soureshjani S, Asadi-Samani M, Luther T (2017) A review for discovering hepatoprotective herbal drugs with least side effects on kidney. J Nephropharmacol 6(2):38–48CrossRefGoogle Scholar
  255. Siddiqui IA, Shaukat SS, Sheikh IH, Khan A (2006) Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode, Meloidogyne javanica in tomato. World J Microbiol Biotechnol 22(6):641–650CrossRefGoogle Scholar
  256. Siddiqui ZA, Akhtar MS (2009) Effects of antagonistic fungi, plant growth-promoting rhizobacteria, and arbuscular mycorrhizal fungi alone and in combination on the reproduction of Meloidogyne incognita and growth of tomato. J Gen Plant Pathol 75(2):144CrossRefGoogle Scholar
  257. Sidorova SF (1963) Review of fungal diseases of buckwheat in the USSR Trudy. Vses Inst Zashch Rast 19:25–31Google Scholar
  258. Singh N, Pandey P, Dubey RC, Maheshwari DK (2008) Biological control of root rot fungus Macrophomina phaseolina and growth enhancement of Pinus roxburghii (Sarg.) by rhizosphere competent Bacillus subtilis BN1. World J Microbiol Biotechnol 24(9):1669Google Scholar
  259. Skrabanja V, Kreft I (1998) Resistant starch formation following autoclaving of buckwheat (Fagopyrum esculentum Moench) groats: An in vitro study. J Agric Food Chem 46(5):2020–2023CrossRefGoogle Scholar
  260. Skrabanja V, Liljeberg Elmståhl HG, Kreft I, Björck IM (2001) Nutritional properties of starch in buckwheat products: studies in vitro and in vivo. J Agric Food Chem 49(1):490–496CrossRefGoogle Scholar
  261. Smitha KP (2000) Management of foliar blight of Amaranthus (Amaranthus tricolor L.) caused by Rhizoctonia solani Kuhn using microbial antagonists. MSc (Ag.) Thesis. Thiruvananthapuram. p 74Google Scholar
  262. Springmann M, Godfray HC, Rayner M, Scarborough P (2016) Analysis and valuation of the health and climate change cobenefits of dietary change. Proc Natl Acad Sci 113(15):4146–4151CrossRefGoogle Scholar
  263. Sridevi M, Mallaiah KV (2008) Production of hydroxamate-type of siderophores by Rhizobium strains from Sesbania sesban (L.). Merr. Int J Soil Sci 3:24–28Google Scholar
  264. Steadman KJ, Burgoon MS, Lewis BA, Edwardson SE, Obendorf RL (2001) Buckwheat seed milling fractions: description, macronutrient composition and dietary fibre. J Cereal Sci 33(3):271–278CrossRefGoogle Scholar
  265. Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56(4):845–857CrossRefGoogle Scholar
  266. Stibilj V, Kreft I, Smrkolj P, Osvald J (2004) Enhanced selenium content in buckwheat (Fagopyrum esculentum Moench) and pumpkin (Cucurbita pepo L.) seeds by foliar fertilisation. Euro Food Res Technol 219(2):142–144Google Scholar
  267. Stone JL (1906) Buckwheat, vol. 238. Cornell UniversityGoogle Scholar
  268. Storer NP, Babcock JM, Schlenz M, Meade T, Thompson GD, Bing JW, Huckaba RM (2010) Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J Econ Entomol 103(4):1031–1038CrossRefGoogle Scholar
  269. Supanjani HH, Jung JS, Lee KD (2006) Rock phosphate-potassium and rock-solubilising bacteria as alternative, sustainable fertilizers. Agron Sustain Dev 26(4):233–240CrossRefGoogle Scholar
  270. Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147(1):3–9CrossRefGoogle Scholar
  271. Suzuki T, Honda Y, Funatsuki W, Nakatsuka K (2002) Purification and characterization of flavonol 3-glucosidase, and its activity during ripening in tartary buckwheat seeds. Plant Sci 163(3):417–423CrossRefGoogle Scholar
  272. Swaminathan JM, Smith SF, Sadeh NM (1998) Modeling supply chain dynamics: a multiagent approach. Decis Sci 29(3):607–632CrossRefGoogle Scholar
  273. Swaminathan MS (2006) An evergreen revolution. Crop Sci 46(5):2293–2303CrossRefGoogle Scholar
  274. Talukder MMR, Riazuddin M, Rahman MM, Uddin MS, Khan MSI (2012) Efficacy of fungicodes to control white rust (Albugo occidentalis) of red amaranth (Amaranthus sp.). Bangladesh Phytopathol Soc 28:1–2Google Scholar
  275. Tan S, Yang C, Mei X, Shen S, Raza W, Shen Q, Xu Y (2013) The effect of organic acids from tomato root exudates on rhizosphere colonization of Bacillus amyloliquefaciens T-5. Appl Soil Ecol 64:15–22CrossRefGoogle Scholar
  276. Taylor J, Awika J (2017) Gluten-free ancient grains: cereals, pseudocereals, and legumes: sustainable, Nutritious, and health-promoting foods for the 21st century. Woodhead PublishingGoogle Scholar
  277. Thakur R, Kumar S, Awasthi CP (2016) Mineral composition and protein fractionation of tartary buckwheat grains grown in cold dry desert of Himachal Pradesh. J Hill Agricul 7(1):125–128CrossRefGoogle Scholar
  278. Thomas L, Gupta A, Gopal M, George P, Thomas GV (2010) Plant growth promoting potential of Bacillus spp. isolated from rhizosphere of cocoa (Theobroma cacao L.). J Plant Crop 38(2):97–104Google Scholar
  279. Timmusk S, El-Daim IAA, Copolovici L, Tanilas T, Kännaste A, Behers L et al (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9(5):e96086CrossRefPubMedPubMedCentralGoogle Scholar
  280. Tiryaki O, Temur C (2010) The fate of pesticide in the environment. J Biol Environ Sci 4(10):29–38Google Scholar
  281. Tomotake H, Shimaoka I, Kayashita J, Yokoyama F, Nakajoh M, Kato N (2000) A buckwheat protein product suppresses gallstone formation and plasma cholesterol more strongly than soy protein isolate in hamsters. J Nutr 130(7):1670–1674CrossRefGoogle Scholar
  282. Trivedi P, Pandey A (2008) Plant growth promotion abilities and formulation of Bacillus megaterium strain B 388 (MTCC6521) isolated from a temperate Himalayan location. Indian J Microbiol 48(3):342–347CrossRefGoogle Scholar
  283. Trivedi P, Sa T (2008) Pseudomonas corrugata (NRRL B-30409) mutants increased phosphate solubilization, organic acid production, and plant growth at lower temperatures. Curr Microbiol 56(2):140–144CrossRefGoogle Scholar
  284. Veer SA, Goel R (2015) Plant growth promoting efficiency of chryseobacterium sp. PSR 10 on finger millet (Eleusine coracana). J Global Biosci 4(6):2569–2575Google Scholar
  285. Voisard C, Keel C, Haas D, Dèfago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8(2):351–358CrossRefPubMedPubMedCentralGoogle Scholar
  286. Wani PA, Khan MS, Zaidi A (2008) Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil. Biotechnol Lett 30(1):159–163CrossRefGoogle Scholar
  287. Wenke K, Kai M, Piechulla B (2010) Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta 231(3):499–506CrossRefGoogle Scholar
  288. Went FW, Thimann KV (1937) Phytohormones, New York, p 294Google Scholar
  289. West S, Horn H, Hijnen WAM, Castillo C, Wagner M (2014) Confocal laser scanning microscopy as a tool to validate the efficiency of membrane cleaning procedures to remove biofilms. Sep Purif Technol 122:402–411Google Scholar
  290. Wieslander G, Norback D (2001) Buckwheat consumption and its medical and pharmacological effects–a review of the literature. In: Proceedings of the 8th international symposium on Buckwheat–ISB, September 2001, pp 608–612Google Scholar
  291. Wright M, Osborne DJ (1974) Abscission in Phaseolus vulgaris the positional differentiation and ethylene-induced expansion growth of specialised cells. Planta 120(2):163–170CrossRefGoogle Scholar
  292. Wronkowska M, Zielińska D, Szawara-Nowak D, Troszyńska A, Soral-Śmietana M (2010) Antioxidative and reducing capacity, macroelements content and sensorial properties of buckwheat-enhanced gluten-free bread. Int J Food Sci Technol 45(10):1993–2000CrossRefGoogle Scholar
  293. Yadav BK, Verma A (2012) Phosphate solubilization and mobilization in soil through microorganisms under arid ecosystems. In: The functioning of ecosystems. InTechGoogle Scholar
  294. Yadav J, Verma JP, Jaiswal DK, Kumar A (2014) Evaluation of PGPR and different concentration of phosphorus level on plant growth, yield and nutrient content of rice (Oryza sativa). Ecol Eng 62:123–128Google Scholar
  295. Yuan J, Zhang N, Huang Q, Raza W, Li R, Vivanco JM, Shen Q (2015) Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6. Scientific Rep 5:13438Google Scholar
  296. Zahir ZA, Ghani U, Naveed M, Nadeem SM, Asghar HN (2009) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch Microbiol 191(5):415–424Google Scholar
  297. Zeriouh H, de Vicente A, Pérez-García A, Romero D (2014) Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity. Environ Microbiol 16(7):2196–2211CrossRefGoogle Scholar
  298. Zhang YQ, Ren SX, Li HL, Wang YX, Fu G, Yang J et al (2003) Genome-based analysis of virulence genes in a non-biofilm-forming Staphylococcus epidermidis strain (ATCC 12228). Mol Microbiol 49(6):1577–1593CrossRefGoogle Scholar
  299. Zohora US, Ano T, Rahman MS (2016) Biocontrol of Rhizoctonia solani K1 by iturin A producer Bacillus subtilis RB14 seed treatment in tomato plants. Adv Microbiol 6(06):424CrossRefGoogle Scholar
  300. Zongzheng Y, Xin L, Zhong L, Jinzhao P, Jin Q, Wenyan Y (2010) Effect of Bacillus subtilis SY1 on antifungal activity and plant growth. Int J Agric Biol Eng 2(4):55–61Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Shrivardhan Dheeman
    • 2
    • 1
    Email author
  • Dinesh Kumar Maheshwari
    • 1
  • Ramesh Chand Dubey
    • 1
  • Sandeep Kumar
    • 1
  • Nitin Baliyan
    • 1
  • Sandhya Dhiman
    • 1
  1. 1.Department of Botany and MicrobiologyGurukula Kangri VishwavidyalayaHaridwarIndia
  2. 2.Department of MicrobiologySardar Bhagwan Singh UniversityDehradunIndia

Personalised recommendations