Advertisement

Bacterial Mixtures, the Future Generation of Inoculants for Sustainable Crop Production

  • Yolanda Elizabeth Morales-GarcíaEmail author
  • Antonino Baez
  • Verónica Quintero-Hernández
  • Dalia Molina-Romero
  • América Paulina Rivera-Urbalejo
  • Laura Abisaí Pazos-Rojas
  • Jesús Muñoz-RojasEmail author
Chapter
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 23)

Abstract

Plant growth-promoting bacteria (PGPB) have been extensively studied, because of different mechanisms to perform phytostimulation, as well as the abilities to colonize plants. The number of crop types and hectares of agricultural land, where PGPR are applied is low compared with the total crops or farming area. However, the PGPB application in crop fields is increasingly becoming more accepted due to the advantages to crops and environment such as the increment in productivity, the diminution in the use of chemical fertilizers and toxic compounds such as pesticides and herbicides. These traits make beneficial bacteria formulations the ‘right choice’ in healthy agriculture since they are highly compatible with sustainable crop production. The co-inoculation of plants with two or more beneficial bacteria apparently provides greater phytostimulation than mono-inoculation, perhaps because of the synergistic and multifarious effects occurring when two or more microorganisms are co-interacting. There is a consensus that bacterial mixtures provide greater benefits to the plants, the number of formulations containing more than three species of microorganisms in consortium is still limited. Therefore, we believe that more research and investment is needed to design and formulate multi-species inoculants containing compatible bacteria and other beneficial microorganisms in order to be capable of coexisting both in the designed formulation and associated with plants for sustainable benefits.

Keywords

Bacterial inoculants Bacterial desiccation PGPB Beneficial bacteria 

Notes

Acknowledgements

We thank CONACYT and VIEP-BUAP for the financial support to carry out our research.

Conflict of Interest

The author(s) have no conflict of interest.

References

  1. Aeron A, Kumar S, Pandey P, Maheshwari DK (2011) Emerging role of plant growth promoting rhizobacteria in agrobiology. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystems. Springer, Berlin, pp 1–36Google Scholar
  2. Aeron A, Maheshwari DK, Dheeman S, Agarwal M, Dubey RC, Bajpai VK (2017) Plant growth promotion and suppression of charcoal-rot fungus (Macrophomina phaseolina) in velvet bean (Mucuna pruriens L.) by root nodule bacteria. J Phytopathol 165:463–478.  https://doi.org/10.1111/jph.12581
  3. Ahemad M, Khan MS (2012) Alleviation of fungicide-induced phytotoxicity in greengram [Vigna radiata (L.) Wilczek] using fungicide-tolerant and plant growth promoting Pseudomonas strain. Saudi J Biol Sci 19:451–459.  https://doi.org/10.1016/j.sjbs.2012.06.003
  4. Ahmad M, Ahmad I, Hilger TH, Nadeem SM, Akhtar MF, Jamil M et al (2018) Preliminary study on phosphate solubilizing Bacillus subtilis strain Q3 and Paenibacillus sp. strain Q6 for improving cotton growth under alkaline conditions. PeerJ 6:e5122.  https://doi.org/10.7717/peerj.5122
  5. Alatorre-Cruz JM, Bustillos-Cristales M del R, Morales-García YE, Hernández-Tenorio AL, Baez-Rogelio A, Pérez-Santos JLM et al (2015) Multi-species formulation to improve the growth of plants from semi-desertic zones, 1–28Google Scholar
  6. Albareda M, Dardanelli MS, Sousa C, Megías M, Temprano F, Rodríguez-Navarro DN (2006) Factors affecting the attachment of rhizospheric bacteria to bean and soybean roots. FEMS Microbiol Lett 259:67–73CrossRefGoogle Scholar
  7. Amann RI, Ludwig W, Schleifer K (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169PubMedPubMedCentralGoogle Scholar
  8. Annan H, Golding AL, Zhao Y, Dong Z (2012) Choice of hydrogen uptake (Hup) status in legume-rhizobia symbioses. Ecol Evol 2:2285–2290.  https://doi.org/10.1002/ece3.325CrossRefPubMedPubMedCentralGoogle Scholar
  9. Atieno M, Herrmann L, Okalebo R, Lesueur D (2012) Efficiency of different formulations of Bradyrhizobium japonicum and effect of co-inoculation of Bacillus subtilis with two different strains of Bradyrhizobium japonicum. World J Microbiol Biotechnol 28:2541–2550.  https://doi.org/10.1007/s11274-012-1062-xCrossRefPubMedGoogle Scholar
  10. Baez-Rogelio A, Morales-García YE, Quintero-Hernández V, Muñoz-Rojas J (2017) Next generation of microbial inoculants for agriculture and bioremediation. Microb Biotechnol 10:19–21.  https://doi.org/10.1111/1751-7915.12448CrossRefPubMedGoogle Scholar
  11. Bal HB, Das S, Dangar TK, Adhya TK (2013) ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants. J Basic Microbiol 53:972–984.  https://doi.org/10.1002/jobm.201200445CrossRefPubMedGoogle Scholar
  12. Bardin SD, Huang H-C, Pinto J, Amundsen EJ, Erickson RS (2004) Biological control of Pythium damping-off of pea and sugar beet by Rhizobium leguminosarum bv. viceae. Can J Bot 82:291–296.  https://doi.org/10.1139/b04-003
  13. Barea JM, Toro M, Orozco MO, Campos E, Azcón R (2002) The application of isotopic (32P and 15N) dilution techniques to evaluate the interactive effect of phosphate-solubilizing rhizobacteria, mycorrhizal fungi and Rhizobium to improve the agronomic efficiency of rock phosphate for legume crops. Nutr Cycl Agroecosystems 63:35–42.  https://doi.org/10.1023/A:1020589732436CrossRefGoogle Scholar
  14. Barman M, Paul S, Choudhury AG, Roy P, Sen J (2017) Biofertilizer as prospective input for sustainable agriculture in India. Int J Curr Microbiol Appl Sci 6:1177–1186.  https://doi.org/10.20546/ijcmas.2017.611.141CrossRefGoogle Scholar
  15. Baset Mia MA, Shamsuddin ZH (2010) Rhizobium as a crop enhancer and biofertilizer for increased cereal production. Afr J Biotechnol 9:6001–6009Google Scholar
  16. Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33.  https://doi.org/10.1007/s11104-013-1956-x
  17. Bashan Y, Huang P, Kloepper JW, de-Bashan L (2017) A proposal for avoiding fresh-weight measurements when reporting the effect of plant growth-promoting (rhizo)bacteria on growth promotion of plants. Biol Fertil Soils 53:1–2.  https://doi.org/10.1007/s00374-016-1153-1
  18. Benbrook CM (2016) Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur 28:3.  https://doi.org/10.1186/s12302-016-0070-0
  19. Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051.  https://doi.org/10.1590/S1415-47572012000600020CrossRefPubMedPubMedCentralGoogle Scholar
  20. Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486.  https://doi.org/10.1016/j.tplants.2012.04.001CrossRefPubMedGoogle Scholar
  21. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350.  https://doi.org/10.1007/s11274-011-0979-9CrossRefPubMedGoogle Scholar
  22. Böltner D, Godoy P, Muñoz-Rojas J, Duque E, Moreno-Morillas S, Sánchez L et al (2008) Rhizoremediation of lindane by root-colonizing Sphingomonas. Microb Biotechnol 1:87–93PubMedGoogle Scholar
  23. Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503.  https://doi.org/10.1007/s00253-004-1696-1CrossRefPubMedGoogle Scholar
  24. Broadbent JR, McMahon DJ, Welker DL, Oberg CJ, Moineau S (2003) Biochemistry, genetics, and applications of exopolysaccharide production in Streptococcus thermophilus: a review. J Dairy Sci 86:407–423.  https://doi.org/10.3168/jds.S0022-0302(03)73619-4CrossRefPubMedGoogle Scholar
  25. Caballero A, Lázaro JJ, Ramos JL, Esteve-Núñez A (2005) PnrA, a new nitroreductase-family enzyme in the TNT-degrading strain Pseudomonas putida JLR11. Environ Microbiol 7:1211–1219.  https://doi.org/10.1111/j.1462-2920.2005.00801.xCrossRefPubMedGoogle Scholar
  26. Caballero-Mellado J, Martínez-Aguilar L, Paredes-Valdez G, Estrada-de los Santos P (2004) Burkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species. Int J Syst Evol Microbiol 54:1165–1172.  https://doi.org/10.1099/ijs.0.02951-0
  27. Caballero-Mellado J, Onofre-Lemus J, Estrada-de Los Santos P, Martínez-Aguilar L (2007) The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and Bioremediation. Appl Environ Microbiol 73:5308–5319.  https://doi.org/10.1128/AEM.00324-07CrossRefPubMedPubMedCentralGoogle Scholar
  28. Çakmakçi R, Dönmez F, Aydın A, Şahin F (2006) Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol Biochem 38:1482–1487.  https://doi.org/10.1016/j.soilbio.2005.09.019CrossRefGoogle Scholar
  29. Carolan MS (2009) Barriers to the adoption of sustainable agriculture on rented land: an axamination of contesting social fields. Rural Sociol 70:387–413.  https://doi.org/10.1526/0036011054831233CrossRefGoogle Scholar
  30. Cassán F, Vanderleyden J, Spaepen S (2014) Physiological and agronomical aspects of phytohormone production by model Plant-Growth-Promoting Rhizobacteria (PGPR) belonging to the genus Azospirillum. J Plant Growth Regul 33:440–459.  https://doi.org/10.1007/s00344-013-9362-4CrossRefGoogle Scholar
  31. Castagno LN, Estrella MJ, Sannazzaro AI, Grassano AE, Ruiz OA (2011) Phosphate-solubilization mechanism and in vitro plant growth promotion activity mediated by Pantoea eucalypti isolated from Lotus tenuis rhizosphere in the Salado River Basin (Argentina). J Appl Microbiol 110:1151–1165.  https://doi.org/10.1111/j.1365-2672.2011.04968.xCrossRefPubMedGoogle Scholar
  32. Cawoy H, Debois D, Franzil L, De Pauw E, Thonart P, Ongena M (2015) Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens. Microb Biotechnol 8:281–295.  https://doi.org/10.1111/1751-7915.12238CrossRefPubMedGoogle Scholar
  33. Cazorla FM, Romero D, Pérez-García A, Lugtenberg BJJ, De VA, Bloemberg G (2007) Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity. J Appl Microbiol 103:1950–1959.  https://doi.org/10.1111/j.1365-2672.2007.03433.xCrossRefPubMedGoogle Scholar
  34. Chemier JA, Fowler ZL, Koffas MAG, Leonard E (2009) Trends in microbial synthesis of natural products and biofuels. Adv Enzymol Relat Areas Mol Biol 76:151–217PubMedGoogle Scholar
  35. Chen S-K, Edwards CA, Subler S (2001) Effects of the fungicides benomyl, captan and chlorothalonil on soil microbial activity and nitrogen dynamics in laboratory incubations. Soil Biol Biochem 33:1971–1980.  https://doi.org/10.1016/S0038-0717(01)00131-6CrossRefGoogle Scholar
  36. Cheng X, Etalo DW, van de Mortel JE, Dekkers E, Nguyen L, Medema MH et al (2017) Genome-wide analysis of bacterial determinants of plant growth promotion and induced systemic resistance by Pseudomonas fluorescens. Environ Microbiol 19:4638–4656.  https://doi.org/10.1111/1462-2920.13927CrossRefPubMedGoogle Scholar
  37. Compant S, Duffy B, Nowak J, Cle C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959.  https://doi.org/10.1128/aem.71.9.4951
  38. Costacurta A, Vanderleyden J (1995) Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol 21:1–18.  https://doi.org/10.3109/10408419509113531CrossRefPubMedGoogle Scholar
  39. Cummings SP (2009) The application of plant growth promoting rhizobacteria (PGPR) in low input and organic cultivation of graminaceous crops; potential and problems. Environ Biotechnol 5:43–50Google Scholar
  40. Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci 99:10494–10499.  https://doi.org/10.1073/pnas.142680199CrossRefPubMedGoogle Scholar
  41. de Oliveira ALM, de Canuto EL, Urquiaga S, Reis VM, Baldani JI (2006) Yield of micropropagated sugarcane varieties in different soil types following inoculation with diazotrophic bacteria. Plant Soil 284:23–32.  https://doi.org/10.1007/s11104-006-0025-0CrossRefGoogle Scholar
  42. Defez R, Esposito R, Angelini C, Bianco C (2016) Overproduction of indole-3-acetic acid in free-living rhizobia induces transcriptional changes resembling those occurring in nodule bacteroids. Mol Plant-Microbe Interact 29:484–495.  https://doi.org/10.1094/MPMI-01-16-0010-RCrossRefPubMedGoogle Scholar
  43. Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2:621CrossRefGoogle Scholar
  44. Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P et al (2001) Responses of agronomically important crops to inoculation with Azospirillum. Funct Plant Biol 28:871–879CrossRefGoogle Scholar
  45. Donham KJ (2016) Health effects of agricultural pesticides. Agric Med.  https://doi.org/10.1002/9781118647356.ch6
  46. Elbadry M, Taha RM, Eldougdoug KA, Gamal-Eldin H (2006) Induction of systemic resistance in faba bean (Vicia faba L.) to bean yellow mosaic potyvirus (BYMV) via seed bacterization with plant growth promoting rhizobacteria. J Plant Dis Prot 113:247–251.  https://doi.org/10.1007/bf03356189
  47. Elkoca E, Kantar F, Sahin F (2007) Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpea. J Plant Nutr 31:157–171.  https://doi.org/10.1080/01904160701742097CrossRefGoogle Scholar
  48. Esquivel-Cote R, Gavilanes-Ruiz M, Cruz-Ortega R, Pilar Huante Y (2013) Importancia agrobiotecnológica de la enzima acc desaminasa en rizobacterias, una revisión. Rev Fitotec Mex 36:251–258.  https://doi.org/10.1016/j.resmic.2006.11.013CrossRefGoogle Scholar
  49. Farag MA, Zhang H, Ryu CM (2013) Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles. J Chem Ecol 39:1007–1018.  https://doi.org/10.1007/s10886-013-0317-9CrossRefPubMedPubMedCentralGoogle Scholar
  50. Fernández M, Niqui-Arroyo JL, Conde S, Ramos JL, Duque E (2012) Enhanced tolerance to naphthalene and enhanced rhizoremediation performance for Pseudomonas putida KT2440 via the NAH7 catabolic plasmid. Appl Environ Microbiol 78:5104–5110.  https://doi.org/10.1128/AEM.00619-12CrossRefPubMedPubMedCentralGoogle Scholar
  51. Fibach-Paldi S, Burdman S, Okon Y (2012) Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense. FEMS Microbiol Lett 326:99–108.  https://doi.org/10.1111/j.1574-6968.2011.02407.xCrossRefPubMedGoogle Scholar
  52. Fuentes-Ramirez LE, Caballero-Mellado J (2006) Bacterial Biofertilizers. In: Siddiqui ZA (ed) PGPR: Biocontrol and Biofertilization. Springer, Netherlands, pp 143–172Google Scholar
  53. Fuentes-Ramirez LE, Jimenez-Salgado T, Abarca-Ocampo IR, Caballero-Mellado J (1993) Acetobacter diazotrophicus, an indoleacetic acid producing bacterium isolated from sugarcane cultivars of México. Plant Soil 154:145–150.  https://doi.org/10.1007/BF00012519CrossRefGoogle Scholar
  54. Ghosh N (2004) Promoting biofertilisers in Indian agriculture. Econ Polit Wkly 39:5617–5625Google Scholar
  55. Gkizi D, Lehmann S, Haridon FL, Serrano M, Paplomatas EJ (2016) The innate immune signaling system as a regulator of disease resistance and induced systemic resistance activity against Verticillium dahliae. Mol Plant Microbe Interact 29:313–323.  https://doi.org/10.1094/MPMI-11-15-0261-RCrossRefPubMedGoogle Scholar
  56. Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39.  https://doi.org/10.1016/j.micres.2013.09.009CrossRefPubMedGoogle Scholar
  57. Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68.  https://doi.org/10.1006/jtbi.1997.0532CrossRefPubMedGoogle Scholar
  58. Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. In: Bakker PAHM, Raaijmakers JM, Bloemberg G, Höfte M, Lemanceau P, Cooke BM (eds) New perspectives and approaches in plant growth-promoting Rhizobacteria research. Springer, Netherlands, pp 329–339Google Scholar
  59. Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2:1–19.  https://doi.org/10.1080/23311932.2015.1127500CrossRefGoogle Scholar
  60. Gutiérrez-Zamora ML, Martı́nez-Romero E (2001) Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J Biotechnol 91:117–126.  https://doi.org/10.1016/S0168-1656(01)00332-7
  61. Guzmán A, Obando M, Rivera D, Bonilla R (2012) Selección y caracterización de rizobacterias promotoras de crecimiento vegetal (RPCV) asociadas al cultivo de algodón (Gossypium hirsutum). Rev Colomb Biotecnol 14:182–190Google Scholar
  62. Gyaneshwar P, Naresh Kumar G, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93.  https://doi.org/10.1023/A:1020663916259CrossRefGoogle Scholar
  63. Hassen W, Neifar M, Cherif H, Najjari A, Chouchane H, Driouich RC et al (2018) Pseudomonas rhizophila S211, a new plant growth-promoting rhizobacterium with potential in pesticide-bioremediation. Front Microbiol 9:34CrossRefGoogle Scholar
  64. Hernández-Calderón E, Aviles-Garcia ME, Castulo-Rubio DY, Macías-Rodríguez L, Ramírez VM, Santoyo G et al (2018) Volatile compounds from beneficial or pathogenic bacteria differentially regulate root exudation, transcription of iron transporters, and defense signaling pathways in Sorghum bicolor. Plant Mol Biol 96:291–304.  https://doi.org/10.1007/s11103-017-0694-5CrossRefPubMedGoogle Scholar
  65. Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18.  https://doi.org/10.1007/s11104-008-9668-3CrossRefGoogle Scholar
  66. Huang X, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92:267–275.  https://doi.org/10.1139/cjb-2013-0225
  67. Idris EE, Iglesias DJ, Talon M, Borriss R (2007) Tryptophan-dependent production of Indole-3-Acetic Acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant-Microbe Interact 20:619–626.  https://doi.org/10.1094/MPMI-20-6-0619CrossRefPubMedGoogle Scholar
  68. Igbedioh SO (1991) Effects of agricultural pesticides on humans, animals, and higher plants in developing countries. Arch Environ Heal An Int J 46:218–224.  https://doi.org/10.1080/00039896.1991.9937452CrossRefGoogle Scholar
  69. Jha CK, Saraf M (2015) Plant growth promoting Rhizobacteria (PGPR): a review. J Agric Res Dev 5:108–119Google Scholar
  70. Jimenez-Salgado T, Fuentes-Ramirez LE, Tapia-Hernandez A, Mascarua-Esparza MA, Martinez-Romero E, Caballero-Mellado J (1997) Coffea arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogen-fixing acetobacteria. Appl Environ Microbiol 63:3676–3683PubMedPubMedCentralGoogle Scholar
  71. Johnsen K, Jacobsen CS, Torsvik V, Sørensen J (2001) Pesticide effects on bacterial diversity in agricultural soils—a review. Biol Fertil Soils 33:443–453.  https://doi.org/10.1007/s003740100351CrossRefGoogle Scholar
  72. Jorquera MA, Shaharoona B, Nadeem SM, de la Luz MM, Crowley DE (2012) Plant growth-promoting rhizobacteria associated with ancient clones of Creosote Bush (Larrea tridentata). Microb Ecol 64:1008–1017.  https://doi.org/10.1007/s00248-012-0071-5CrossRefPubMedGoogle Scholar
  73. Kanchiswamy CN, Malnoy M, Maffei ME (2015) Bioprospecting bacterial and fungal volatiles for sustainable agriculture. Trends Plant Sci 20:206–211.  https://doi.org/10.1016/j.tplants.2015.01.004CrossRefPubMedGoogle Scholar
  74. Kang SC, Ha CG, Lee TG, Maheshwari DK (2002) Solubilization of insoluble inorganic phosphates by a soil-inhabiting fungus Fomitopsis sp. PS 102. Curr Sci 82:439–442Google Scholar
  75. Kang SM, Khan AL, You YH, Kim JG, Kamran M, Lee IJ (2014) Gibberellin production by newly isolated strain Leifsonia soli SE134 and its potential to promote plant growth. J Microbiol Biotechnol 24:106–112.  https://doi.org/10.4014/jmb.1304.04015CrossRefPubMedGoogle Scholar
  76. Kaschuk G, Hungria M (2017) Diversity and importance of diazotrophic bacteria to agricultural sustainability in the tropics. In: de Azevedo JL, Quecine MC (eds) Diversity and benefits of microorganisms from the tropics. Springer International Publishing, Cham, pp 269–292Google Scholar
  77. Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture—a review. Agron Sustain Dev 27:29–43.  https://doi.org/10.1051/agro:2006011CrossRefGoogle Scholar
  78. Khan MS, Zaidi A, Ahmad E (2014) Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms. In: Khan MS, Zaidi A, Musarrat J (eds) Phosphate solubilizing microorganisms: principles and application of microphos technology. Springer International Publishing, Cham, pp 31–62Google Scholar
  79. Kloepper JW, Ryu C-M, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266.  https://doi.org/10.1094/PHYTO.2004.94.11.1259CrossRefPubMedGoogle Scholar
  80. Krishnan HB, Kang BR, Krishnan AH, Kim KY, Kim YC (2007) Rhizobium etli USDA9032 engineered to produce a phenazine antibiotic inhibits the growth of fungal pathogens but is impaired in symbiotic performance. Appl Environ Microbiol 73:327–330.  https://doi.org/10.1128/AEM.02027-06CrossRefPubMedGoogle Scholar
  81. Kumar P, Dubey RC, Maheshwari DK (2012) Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol Res 167:493–499.  https://doi.org/10.1016/j.micres.2012.05.002CrossRefPubMedGoogle Scholar
  82. Kumar A, Maurya BR, Raghuwanshi R (2014) Isolation and characterization of PGPR and their effect on growth, yield and nutrient content in wheat (Triticum aestivum L.). Biocatal Agric Biotechnol 3:121–128.  https://doi.org/10.1016/j.bcab.2014.08.003
  83. Lambrese Y, Guiñez M, Calvente V, Sansone G, Cerutti S, Raba J et al (2018) Production of siderophores by the bacterium Kosakonia radicincitans and its application to control of phytopathogenic fungi. Bioresour Technol Reports 3:82–87.  https://doi.org/10.1016/j.biteb.2018.06.003CrossRefGoogle Scholar
  84. Lin W, Bazylinski DA, Xiao T, Wu LF, Pan Y (2014) Life with compass: diversity and biogeography of magnetotactic bacteria. Environ Microbiol 16:2646–2658.  https://doi.org/10.1111/1462-2920.12313CrossRefPubMedGoogle Scholar
  85. Liu K, Newman M, McInroy JA, Hu C-H, Kloepper JW (2017a) Selection and assessment of plant growth-promoting rhizobacteria for biological control of multiple plant diseases. Phytopathology 107:928–936.  https://doi.org/10.1094/PHYTO-02-17-0051-RCrossRefPubMedGoogle Scholar
  86. Liu S-H, Zeng G-M, Niu Q-Y, Liu Y, Zhou L, Jiang L-H et al (2017b) Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: a mini review. Bioresour Technol 224:25–33.  https://doi.org/10.1016/j.biortech.2016.11.095CrossRefPubMedGoogle Scholar
  87. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting Rhizobacteria. Annu Rev Microbiol 63:541–556.  https://doi.org/10.1146/annurev.micro.62.081307.162918CrossRefPubMedGoogle Scholar
  88. Mahajan A, Gupta RD (2009) Bio-fertilizers: their kinds and requirement in India. In: Mahajan A, Gupta RD (eds) Integrated Nutrient Management (INM) in a sustainable rice—wheat cropping system. Springer Netherlands, pp 75–100Google Scholar
  89. Maheshwari DK, Aeron A, Dubey RC, Agarwal M, Dheeman S, Shukla S (2015a) Multifaceted beneficial association with Pseudomonas and rhizobia on growth promotion of Mucuna pruriensis L. J Pure Appl Microbiol 8:4657–4667Google Scholar
  90. Maheshwari DK, Dubey RC, Agarwal M, Dheeman S, Aeron A, Bajpai VK (2015b) Carrier based formulations of biocoenotic consortia of disease suppressive Pseudomonas aeruginosa KRP1 and Bacillus licheniformis KRB1. Ecol Eng 81:272–277.  https://doi.org/10.1016/j.ecoleng.2015.04.066CrossRefGoogle Scholar
  91. Majumdar K (2015) Bio-fertilizer use in Indian agriculture. Indian J Res 4:377–381Google Scholar
  92. Malik DK, Sindhu SS (2011) Production of indole acetic acid by Pseudomonas sp.: effect of coinoculation with Mesorhizobium sp. Cicer on nodulation and plant growth of chickpea (Cicer arietinum). Physiol Mol Biol Plants 17:25–32.  https://doi.org/10.1007/s12298-010-0041-7
  93. Mazid M, Khan TA (2014) Future of bio-fertilizers in Indian agriculture: an overview. Int J Agric Food Res 3:10–23Google Scholar
  94. Mehnaz S, Kowalik T, Reynolds B, Lazarovits G (2010) Growth promoting effects of corn (Zea mays) bacterial isolates under greenhouse and field conditions. Soil Biol Biochem 42:1848–1856.  https://doi.org/10.1016/j.soilbio.2010.07.003CrossRefGoogle Scholar
  95. Mitter B, Pfaffenbichler N, Flavell R, Compant S, Antonielli L, Petric A et al (2017) A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds. Front Microbiol 8:1–10.  https://doi.org/10.3389/fmicb.2017.00011CrossRefGoogle Scholar
  96. Mohamed R, Groulx E, Defilippi S, Erak T, Tambong JT, Tweddell RJ et al (2017) Physiological and molecular characterization of compost bacteria antagonistic to soil-borne plant pathogens. Can J Microbiol 63:411–426.  https://doi.org/10.1139/cjm-2016-0599CrossRefPubMedGoogle Scholar
  97. Molina-Romero D, Bustillos-Cristales MDR, Rodríguez-Andrade O, Morales-García YE, Santiago-Saenz Y, Castañeda-Lucio M et al (2015) Mecanismos de fitoestimulación por rizobacterias, aislamientos en América y potencial biotecnológico. Biológicas 17:24–34Google Scholar
  98. Molina-Romero D, Baez A, Quintero-Hernández V, Castañeda-Lucio M, Fuentes-Ramírez LE, Bustillos-Cristales MDR et al (2017a) Antagonism assays to identify bacterial strains producing antimicrobial compounds. Protoc PLOS one 12:1–2.  https://doi.org/10.17504/protocols.io.j4mcqu6
  99. Molina-Romero D, Baez A, Quintero-Hernández V, Castañeda-Lucio M, Fuentes-Ramírez LE, Bustillos-Cristales MDR et al (2017b) Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth. PLoS One 12:e0187913Google Scholar
  100. Molina-Romero D, Baez A, Quintero-Hernández V, Castañeda-Lucio M, Fuentes-Ramírez LE, Bustillos-Cristales MDR et al (2017c) Selection assay to identify desiccation tolerant bacteria. Protoc PLOS One 12:1–2.  https://doi.org/10.17504/protocols.io.j4icque
  101. Molina-Romero D, Morales-García YE, Hernández-Tenorio A-L, Castañeda-Lucio M, Netzahuatl-Muñoz AR, Muñoz-Rojas J (2017d) Pseudomonas putida estimula el crecimiento de maíz en función de la temperatura. Rev Iberoam Ciencias 4: 80–88Google Scholar
  102. Morales-García YE, Herrera MDC, Munoz-Rojas J (2007) Chloramphenicol, a classic antibiotic as an alternative for the present. Rev Mex Ciencias Farm 38:58–69Google Scholar
  103. Morales-García YE, Juárez-Hernández D, Fuentes-Ramírez LE, Munive-Hernández A, Muñoz-Rojas J (2013) Formulación de un inoculante multiespecies para potenciar el crecimiento de plantas, 1–36Google Scholar
  104. Morales-García YE, Juárez-Hernández D, Aragón-Hernández C, Mascarua-Esparza MA, Bustillos-Cristales MR, Fuentes-Ramírez LE et al (2011) Growth response of maize plantlets inoculated with Enterobacter spp., as a model for alternative agriculture. Rev Argent Microbiol 43:287–293.  https://doi.org/10.1590/s0325-75412011000400009
  105. Morgan PW, Drew MC (2006) Ethylene and plant responses to stress. Physiol Plant 100:620–630.  https://doi.org/10.1111/j.1399-3054.1997.tb03068.xCrossRefGoogle Scholar
  106. Muñoz-Rojas J, Caballero-Mellado J (2003) Population dynamics of gluconacetobacter diazotrophicus in sugarcane cultivars and its effect on plant growth. Microb Ecol 46:454–464CrossRefGoogle Scholar
  107. Muñoz-Rojas J, Fuentes-Ramírez LE, Caballero-Mellado J (2005) Antagonism among Gluconacetobacter diazotrophicus strains in culture media and in endophytic association. FEMS Microbiol Ecol 54:57–66CrossRefGoogle Scholar
  108. Myresiotis CK, Vryzas Z, Papadopoulou-Mourkidou E (2012) Biodegradation of soil-applied pesticides by selected strains of plant growth-promoting rhizobacteria (PGPR) and their effects on bacterial growth. Biodegradation 23:297–310.  https://doi.org/10.1007/s10532-011-9509-6CrossRefPubMedGoogle Scholar
  109. Nadeem SM, Zahir ZA, Naveed M, Arshad M (2007) Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 53:1141–1149.  https://doi.org/10.1139/W07-081CrossRefPubMedGoogle Scholar
  110. Naureen Z, Rehman NU, Hussain H, Hussain J, Gilani SA, Al Housni SK et al (2017) Exploring the potentials of Lysinibacillus sphaericus ZA9 for plant growth promotion and biocontrol activities against phytopathogenic fungi. Front Microbiol 8:1477CrossRefGoogle Scholar
  111. O’Callaghan M (2016) Microbial inoculation of seed for improved crop performance: issues and opportunities. Appl Microbiol Biotechnol 100:5729–5746.  https://doi.org/10.1007/s00253-016-7590-9CrossRefPubMedPubMedCentralGoogle Scholar
  112. Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591–1601.  https://doi.org/10.1016/0038-0717(94)90311-5CrossRefGoogle Scholar
  113. Oliveira ALM, Stoffels M, Schmid M, Reis VM, Baldani JI, Hartmann A (2009) Colonization of sugarcane plantlets by mixed inoculations with diazotrophic bacteria. Eur J Soil Biol 45:106–113.  https://doi.org/10.1016/j.ejsobi.2008.09.004CrossRefGoogle Scholar
  114. Olovaldo Y, Saenz, Laura Ana, Tenorio H, Morales YE, Ana L et al (2017) Method for obtaining patato plants from the extraction of induced sprouts in controlled conditions. 2015014804:1–25Google Scholar
  115. Onofre-Lemus J, Hernández-Lucas I, Girard L, Caballero-Mellado J (2009) ACC (1-aminocyclopropane-1-carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants. Appl Environ Microbiol 75:6581–6590.  https://doi.org/10.1128/AEM.01240-09CrossRefPubMedPubMedCentralGoogle Scholar
  116. Ortíz-Castro R, Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4:701–712.  https://doi.org/10.4161/psb.4.8.9047CrossRefPubMedPubMedCentralGoogle Scholar
  117. Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science (80–) 276:734–740.  https://doi.org/10.1126/science.276.5313.734
  118. Palus JA, Borneman J, Ludden PW, Triplett EW (1996) A diazotrophic bacterial endophyte isolated from stems of Zea mays L. and Zea luxurians Iltis and Doebley. Plant Soil 186:135–142.  https://doi.org/10.1007/bf00035067
  119. Pandey P, Kang SC, Maheshwari DK (2005) Isolation of endophytic plant growth promoting Burkholderia sp. MSSP from root nodules of Mimosa pudica. Curr Sci 89:177–180Google Scholar
  120. Park HB, Lee B, Kloepper JW, Ryu CM (2013) One shot-two pathogens blocked: exposure of Arabidopsis to hexadecane, a long chain volatile organic compound, confers induced resistance against both Pectobacterium carotovorum and Pseudomonas syringae. Plant Signal Behav 8.  https://doi.org/10.4161/psb.24619
  121. Park MG, Blitzer EJ, Gibbs J, Losey JE, Danforth BN (2015) Negative effects of pesticides on wild bee communities can be buffered by landscape context. Proc R Soc B Biol Sci 282Google Scholar
  122. Paterson J, Jahanshah G, Li Y, Wang Q, Mehnaz S, Gross H (2017) The contribution of genome mining strategies to the understanding of active principles of PGPR strains. FEMS Microbiol Ecol 93:1–12.  https://doi.org/10.1093/femsec/fiw249CrossRefGoogle Scholar
  123. Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220.  https://doi.org/10.1139/m96-032CrossRefPubMedGoogle Scholar
  124. Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801.  https://doi.org/10.1128/AEM.68.8.3795CrossRefPubMedPubMedCentralGoogle Scholar
  125. Pazos-Rojas LA, Rodríguez-Andrade O, Muñoz-Arenas LC, Morales-García YE, Corral-Lugo A, Quintero-Hernández V et al (2018) Desiccation-tolerant rhizobacteria maintain their plant growth- promoting capability after experiencing extreme water stress. SciFed J Appl Microbiol 2:1–13Google Scholar
  126. Pérez-Flores P, Valencia-Cantero E, Altamirano-Hernández J, Pelagio-Flores R, López-Bucio J, García-Juárez P et al (2017) Bacillus methylotrophicus M4-96 isolated from maize (Zea mays) rhizoplane increases growth and auxin content in Arabidopsis thaliana via emission of volatiles. Protoplasma 254:2201–2213.  https://doi.org/10.1007/s00709-017-1109-9CrossRefPubMedGoogle Scholar
  127. Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789CrossRefGoogle Scholar
  128. Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375.  https://doi.org/10.1146/annurev-phyto-082712-102340CrossRefPubMedGoogle Scholar
  129. Prashar P, Kapoor N, Sachdeva S (2014) Rhizosphere: its structure, bacterial diversity and significance. Rev Environ Sci Bio/Technology 13:63–77.  https://doi.org/10.1007/s11157-013-9317-zCrossRefGoogle Scholar
  130. Príncipe A, Fernandez M, Torasso M, Godino A, Fischer S (2018) Effectiveness of tailocins produced by Pseudomonas fluorescens SF4c in controlling the bacterial-spot disease in tomatoes caused by Xanthomonas vesicatoria. Microbiol Res 212–213:94–102.  https://doi.org/10.1016/j.micres.2018.05.010CrossRefPubMedGoogle Scholar
  131. Rajput MS, Iyer B, Pandya M, Jog R (2015) Derepression of mineral phosphate solubilization phenotype by insertional inactivation of IclR in Klebsiella pneumoniae. PLoS One 10:1–15.  https://doi.org/10.1371/journal.pone.0138235CrossRefGoogle Scholar
  132. Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot 20:1–11.  https://doi.org/10.1016/S0261-2194(00)00056-9CrossRefGoogle Scholar
  133. Ramos Martin JL, Muñoz-Rojas J (2006) Microorganismos recombinantes que contienen un gen de resistencia a estrés salino y sus aplicaciones. 1–31Google Scholar
  134. Reis VM, Estrada de los Santos P, Vogel J, Stoffels M, Guyon S, Mavingui P et al (2004) Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. Int J Syst Evol Microbiol 54:2155–2162.  https://doi.org/10.1099/ijs.0.02879-0
  135. Rodríguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21.  https://doi.org/10.1007/s11104-006-9056-9CrossRefGoogle Scholar
  136. Rodríguez-Andrade O, Fuentes-Ramírez LE, Morales-García YE, Molina-Romero D, Bustillos-Cristales MR, Martínez-Contreras RD et al (2015) The decrease in the population of Gluconacetobacter diazotrophicus in sugarcane after nitrogen fertilization is related to plant physiology in split root experiments. Rev Argentina Microbiol 47:335–343.  https://doi.org/10.1016/j.ram.2015.09.004CrossRefGoogle Scholar
  137. Rojas-Solís D, Zetter-Salmón E, Contreras-Pérez M, Rocha-Granados MDC, Macías-Rodríguez L, Santoyo G (2018) Pseudomonas stutzeri E25 and Stenotrophomonas maltophilia CR71 endophytes produce antifungal volatile organic compounds and exhibit additive plant growth-promoting effects. Biocatal Agric Biotechnol 13:46–52.  https://doi.org/10.1016/j.bcab.2017.11.007
  138. Rosenblueth M, Martínez L, Silva J, Martínez-Romero E (2004) Klebsiella variicola, a novel species with clinical and plant-associated isolates. Syst Appl Microbiol 27:27–35.  https://doi.org/10.1078/0723-2020-00261CrossRefPubMedGoogle Scholar
  139. Russo A, Vettori L, Felici C, Fiaschi G, Morini S, Toffanin A (2008) Enhanced micropropagation response and biocontrol effect of Azospirillum brasilense Sp245 on Prunus cerasifera L. clone Mr.S 2/5 plants. J Biotechnol 134:312–319.  https://doi.org/10.1016/j.jbiotec.2008.01.020
  140. Saikia SP, Jain V (2007) Biological nitrogen fixation with non-legumes: an achievable target or a dogma? Curr Sci 92:317–322Google Scholar
  141. Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111:743–767.  https://doi.org/10.1093/aob/mct048CrossRefPubMedPubMedCentralGoogle Scholar
  142. Santoro M, Cappellari L, Giordano W, Banchio E (2015) Production of volatile organic compounds in PGPR. In: Cassán FD, Okon Y, Creus CM (eds) Handbook for Azospirillum: technical issues and protocols. Springer International Publishing, Cham, pp 307–317Google Scholar
  143. Saravanan VS, Madhaiyan M, Osborne J, Thangaraju M, Sa TM (2008) Ecological occurrence of Gluconacetobacter diazotrophicus and nitrogen-fixing Acetobacteraceae members: their possible role in plant growth promotion. Microb Ecol 55:130–140.  https://doi.org/10.1007/s00248-007-9258-6CrossRefPubMedGoogle Scholar
  144. Schneider K, Müller A, Schramm U, Kklipp W (1991) Demonstration of a molybdenum- and vanadium-independent nitrogenase in a nifHDK-deletion mutant of Rhodobacter capsulatus. Eur J Biochem 195:653–661.  https://doi.org/10.1111/j.1432-1033.1991.tb15750.xCrossRefPubMedGoogle Scholar
  145. Sevilla M, Burris RH, Gunapala N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and nif- mutant strains. Mol Plant-Microbe Interact 14:358–366.  https://doi.org/10.1094/MPMI.2001.14.3.358CrossRefPubMedGoogle Scholar
  146. Shahzad SM, Arif MS, Riaz M, Iqbal Z, Ashraf M (2013) PGPR with varied ACC-deaminase activity induced different growth and yield response in maize (Zea mays L.) under fertilized conditions. Eur J Soil Biol 57:27–34.  https://doi.org/10.1016/j.ejsobi.2013.04.002
  147. Sharifi R, Ryu C-M (2018) Revisiting bacterial volatile-mediated plant growth promotion: lessons from the past and objectives for the future. Ann Bot 122:349–358CrossRefGoogle Scholar
  148. Sharma CK, Vishnoi VK, Dubey RC, Maheshwari DK (2018) A twin rhizospheric bacterial consortium induces systemic resistance to a phytopathogen Macrophomina phaseolina in mung bean. Rhizosphere 5:71–75.  https://doi.org/10.1016/j.rhisph.2018.01.001CrossRefGoogle Scholar
  149. Shen D (1997) Microbial diversity and application of microbial products for agricultural purposes in China. Agric Ecosyst Environ 62:237–245.  https://doi.org/10.1016/S0167-8809(96)01132-2CrossRefGoogle Scholar
  150. Simms EL, Taylor DL (2002) Partner choice in nitrogen-fixation mutualisms of legumes and rhizobia. Integr Comp Biol 42:369–380.  https://doi.org/10.1093/icb/42.2.369CrossRefPubMedGoogle Scholar
  151. Singh A, Jain A, Sarma BK, Upadhyay RS, Singh HB (2014a) Rhizosphere competent microbial consortium mediates rapid changes in phenolic profiles in chickpea during Sclerotium rolfsii infection. Microbiol Res 169:353–360.  https://doi.org/10.1016/j.micres.2013.09.014CrossRefPubMedGoogle Scholar
  152. Singh S, Singh BK, Yadav SM, Gupta AK (2014b) Potential of biofertilizers in crop production in Indian agriculture. Am J Plant Nutr Fertil Technol 4:33–40.  https://doi.org/10.3923/ajpnft.2014.33.40CrossRefGoogle Scholar
  153. Singh RP, Shelke GM, Kumar A, Jha PN (2015) Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants. Front Microbiol 6:1–14.  https://doi.org/10.3389/fmicb.2015.00937CrossRefGoogle Scholar
  154. Sivasakthi S, Usharani G, Saranraj P (2014) Biocontrol potentiality of plant growth promoting bacteria (PGPR)—Pseudomonas fluorescens and Bacillus subtilis: A review. African J Agric Res 9:1265–1277.  https://doi.org/10.5897/AJAR2013.7914CrossRefGoogle Scholar
  155. Smith MD, Hartnett DC, Rice CW (2000) Effects of long-term fungicide applications on microbial properties in tallgrass prairie soil. Soil Biol Biochem 32:935–946.  https://doi.org/10.1016/S0038-0717(99)00223-0CrossRefGoogle Scholar
  156. Streeter JG (2003) Effect of trehalose on survival of Bradyrhizobium japonicum during desiccation. J Appl Microbiol 95:484–491.  https://doi.org/10.1046/j.1365-2672.2003.02017.xCrossRefPubMedGoogle Scholar
  157. Strom SL (2008) Microbial ecology of ocean biogeochemistry: a community perspective. Science (80–) 320:1043–1045.  https://doi.org/10.1126/science.1153527
  158. Su P, Tan X, Li C, Zhang D, Cheng J, Zhang S et al (2017) Photosynthetic bacterium Rhodopseudomonas palustris GJ-22 induces systemic resistance against viruses. Microb Biotechnol 10:612–624.  https://doi.org/10.1111/1751-7915.12704CrossRefPubMedPubMedCentralGoogle Scholar
  159. Sundaramoorthy S, Raguchander T, Ragupathi N, Samiyappan R (2012) Combinatorial effect of endophytic and plant growth promoting rhizobacteria against wilt disease of Capsicum annum L. caused by Fusarium solani. Biol Control 60:59–67.  https://doi.org/10.1016/j.biocontrol.2011.10.002
  160. Tahir HAS, Gu Q, Wu H, Raza W, Hanif A, Wu L et al (2017) Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Front Microbiol 8:171CrossRefGoogle Scholar
  161. Tapia-Hernández A, Mascarúa-Esparza MA, Caballero-Mellado J (1990) Production of bacteriocins and siderophore-like activity by Azospirillum brasilense. Microbios 64:73–83PubMedGoogle Scholar
  162. Tchakounté Tchuisseu VG, Berger B, Patz S, Fankem H, Ruppel S (2018) Community structure and plant growth-promoting potential of cultivable bacteria isolated from Cameroon soil. Microbiol Res 214:47–59.  https://doi.org/10.1016/j.micres.2018.05.008CrossRefGoogle Scholar
  163. Tenorio-Salgado S, Tinoco R, Vazquez-Duhalt R, Caballero-Mellado J, Perez-Rueda E (2013) Identification of volatile compounds produced by the bacterium Burkholderia tropica that inhibit the growth of fungal pathogens. J Bioeng 4:236–243.  https://doi.org/10.4161/bioe.23808CrossRefGoogle Scholar
  164. Tortora ML, Díaz-Ricci JC, Pedraza RO (2011) Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Arch Microbiol 193:275–286.  https://doi.org/10.1007/s00203-010-0672-7CrossRefPubMedGoogle Scholar
  165. van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. In: Bakker PAHM, Raaijmakers JM, Bloemberg G, Höfte M, Lemanceau P, Cooke BM (eds) New perspectives and approaches in plant growth-promoting rhizobacteria research. Springer, Netherlands, pp 243–254Google Scholar
  166. van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162.  https://doi.org/10.1146/annurev.phyto.44.070505.143425CrossRefGoogle Scholar
  167. Vandamme P, Goris J, Chen W-M, de Vos P, Willems A (2002) Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Syst Appl Microbiol 25:507–512.  https://doi.org/10.1078/07232020260517634
  168. Vilchez S, Manzanera M (2011) Biotechnological uses of desiccation-tolerant microorganisms for the rhizoremediation of soils subjected to seasonal drought. Appl Microbiol Biotechnol 91:1297.  https://doi.org/10.1007/s00253-011-3461-6
  169. Vivas A, Marulanda A, Ruiz-Lozano JM, Barea JM, Azcón R (2003) Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Mycorrhiza 13:249–256.  https://doi.org/10.1007/s00572-003-0223-z
  170. Vyas P, Gulati A (2009) Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol 9.  https://doi.org/10.1186/1471-2180-9-174
  171. Wang J, Li Q, Xu S, Zhao W, Lei Y, Song C et al (2018) Traits-based integration of multi-species inoculants facilitates shifts of indigenous soil bacterial community. Front Microbiol 9:1–13.  https://doi.org/10.3389/fmicb.2018.01692CrossRefGoogle Scholar
  172. War Nongkhla FM, Joshi SR (2014) Epiphytic and endophytic bacteria that promote growth of ethnomedicinal plants in the subtropical forests of Meghalaya, India. Rev Biol Trop 62:1295.  https://doi.org/10.15517/rbt.v62i4.12138
  173. Zahir ZA, Munir A, Asghar HN, Shaharoona B, Arshad M (2008) Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18:958–963PubMedGoogle Scholar
  174. Zavarzin GA (2008) A planet of bacteria. Her Russ Acad Sci 78:144–151.  https://doi.org/10.1134/S1019331608020056CrossRefGoogle Scholar
  175. Zhang S (2018) Interkingdom microbial consortia mechanisms to guide biotechnological applications. Microb Biotechnol Early 1–15.  https://doi.org/10.1111/1751-7915.13300
  176. Zhang H, Kim M-S, Krishnamachari V, Payton P, Sun Y, Grimson M et al (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839.  https://doi.org/10.1007/s00425-007-0530-2
  177. Zhang H, Sun Y, Xie X, Kim MS, Dowd SE, Paré PW (2009) A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J 58:568–577.  https://doi.org/10.1111/j.1365-313X.2009.03803.xCrossRefPubMedPubMedCentralGoogle Scholar
  178. Zoppellari F, Chitarra W, Lovisolo C, Spanna F, Bardi L (2014) Improvement of drought tolerance in maize (Zea mays L.) by selected rhizospheric microorganisms. Ital J Agrometeorol 19:5–18Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yolanda Elizabeth Morales-García
    • 1
    • 2
    • 3
    Email author
  • Antonino Baez
    • 1
  • Verónica Quintero-Hernández
    • 4
  • Dalia Molina-Romero
    • 1
    • 2
  • América Paulina Rivera-Urbalejo
    • 1
    • 2
    • 3
  • Laura Abisaí Pazos-Rojas
    • 1
  • Jesús Muñoz-Rojas
    • 1
    Email author
  1. 1.Ecology and Survival of Microorganisms Group, Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC)Benemérita Universidad Autónoma de Puebla (BUAP), Ciudad UniversitariaPueblaMexico
  2. 2.Laboratorio de Biología Molecular y Microbiología, Facultad de Ciencias Biológicas, BUAPCiudad UniversitariaPueblaMexico
  3. 3.Facultad de Estomatología-BUAPPueblaMexico
  4. 4.CONACYT, LEMM, CICM, IC-BUAPCiudad UniversitariaPueblaMexico

Personalised recommendations