Regulatory Role of Rhizobacteria to Induce Drought and Salt Stress Tolerance in Plants

  • Humaira YasminEmail author
  • Asia Nosheen
  • Rabia Naz
  • Rumana Keyani
  • Seemab Anjum
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 23)


This chapter summarizes the role of rhizosphere dwelling beneficial bacteria for the induction of tolerance against drought and salt stresses in plants. A vast proportion of world’s agricultural land is rendered less productive or completely unproductive due to different factors including water scarcity and salinity. Drought can be due to insufficient rainfall, dry spells or changes in rainfall patterns whereas salinity is because of excessive amount of salts in soil or water. This salinity can be primary (arise due to natural phenomena) or it can be secondary (anthropogenic in origin). Plants respond to drought and salinity via morphological, physiological and biochemical mechanisms. To overcome devastating effects of these stresses in plants, different strategies developed along with the traditional agricultural practices. An emerging strategy to overcome drought and salinity is the use of plant growth-promoting rhizobacteria (PGPR), which enable plants to combat these stresses by various direct and indirect mechanisms. Rhizobacteria are under extensive research for their beneficial effects, uncomplicated and cost-effective application methods and their environment-friendly behaviors. Now also serve as best alternatives to chemical and traditional methods so as to overcome to tolerate and ameliorate harmful effects in plants.


Drought Salinity PGPR Induced systemic resistance ACC deaminase Phytohormone Proline 


  1. Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131(4)L:1748–1755Google Scholar
  2. Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311(57):91–94CrossRefGoogle Scholar
  3. Afzal Z, Howton TC, Sun Y, Mukhtar MS (2016) The roles of aquaporins in plant stress responses. J Dev Biol 1:9CrossRefGoogle Scholar
  4. Agarwal M, Dheeman S, Dubey RC, Kumar P, Maheshwari DK, Bajpai VK (2017) Differential antagonistic responses of Bacillus pumilus MSUA3 against Rhizoctonia solani and Fusarium oxysporum causing fungal diseases in Fagopyrum esculentum Moench. Microbiol Res 205:40–47CrossRefGoogle Scholar
  5. Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163(2):173–181CrossRefGoogle Scholar
  6. Ahmad M, Zahir ZA, Khalid M, Nazli F, Arshad M (2013a) Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer’s fields. Plant Physiol Biochem 63:170–176CrossRefGoogle Scholar
  7. Ahmad M, Zahir ZA, Nazli F, Akram F, Arshad M, Khalid M (2013b) Effectiveness of halo-tolerant, auxin producing Pseudomonas and Rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiata L.). Braz J Microbiol 44(4):1341–1348Google Scholar
  8. Ahmad P, Wani MR, Azooz MM, Tran LSP (2014) Improvement of crops in the era of climatic changes, vol 2. Springer Internation Publishing, p 397Google Scholar
  9. Alavi P, Starcher M, Zachow C, Müller H, Berg G (2013) Root-microbe systems: the effect and mode of interaction of Stress Protecting Agent (SPA) Stenotrophomonas rhizophila DSM14405T. Front Plant Sci 4:141CrossRefPubMedPubMedCentralGoogle Scholar
  10. Albacete A, Ghanem ME, Martínez-Andújar C, Acosta M, Sánchez-Bravo J, Martínez V, Lutts S, Dodd IC, Pérez-Alfocea F (2008) Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot 59(15):4119–4131Google Scholar
  11. Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision, vol 12, no. 3. ESA Working paper, Rome, FAOGoogle Scholar
  12. Ali J, Xu JL, Gao YM, Ma XF, Meng LJ, Wang Y (2017) Harnessing the hidden genetic diversity for improving multiple abiotic stress tolerance in rice (Oryza sativa L.). Plos One 12(3):e0172515Google Scholar
  13. Ali Y, Aslam Z, Sarwar G, Hussain F (2005) Genotypic and environmental interaction in advanced lines of wheat under salt-affected soils environment of Punjab. Int J Environ Sci Technol 2(3):223–228CrossRefGoogle Scholar
  14. Ansary MH, Rahmani HA, Ardakani MR, Paknejad F, Habibi D, Mafakheri S (2012) Effect of Pseudomonas fluorescens on proline and phytohormonal status of maize (Zea mays L.) under water deficit stress. Ann Biol Res 3:1054–1062Google Scholar
  15. Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Kudoyarova GR (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292(1–2):305–315CrossRefGoogle Scholar
  16. Arora NK, Kim MJ, Kang SC, Maheshwari DK (2007) Role of chitinase and β-1, 3-glucanase activities produced by a fluorescent pseudomonad and in vitro inhibition of Phytophthora capsici and Rhizoctonia solani. Can J Microbiol 53(2):207–212CrossRefGoogle Scholar
  17. Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere 18(5):611–620Google Scholar
  18. Arzanesh MH, Alikhani HA, Khavazi K, Rahimian HA, Miransari M (2011) Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World J Microbiol Biotechnol 27(2):197–205Google Scholar
  19. Ashraf M, Berge SH, Mahmood OT (2004) Inoculating wheat seedling with exopolysaccharides-producing bacteria restrict sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soil 40:157–162Google Scholar
  20. Ashraf M (2010) Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28(1):169–183CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ashraf MA, Ashraf M, Shahbaz M (2012) Growth stage-based modulation in antioxidant defense system and proline accumulation in two hexaploid wheat (Triticum aestivum L.) cultivars differing in salinity tolerance. Flora-Morphol Distrib Func Ecol Plant 207(5):388–397Google Scholar
  22. Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216CrossRefGoogle Scholar
  23. Ashraf M, Foolad MR (2013) Crop breeding for salt tolerance in the era of molecular markers and marker-assisted selection. Plant Breed 132(1):10–20CrossRefGoogle Scholar
  24. Ashraf M, Athar HR, Harris PJC, Kwon TR (2008) Some prospective strategies for improving crop salt tolerance. Adv Agron 97:45–110CrossRefGoogle Scholar
  25. Asim M, Aslam M, Bano A, Munir M, Majeed A, Abbas SH (2013) Role of phytohormones in root nodulation and yield of soybean under salt stress. Am J Res Commun 1:191–208Google Scholar
  26. Aslantaş R, Cakmakçi R, Şahin F (2007) Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. Sci Horticul 111(4):371–377CrossRefGoogle Scholar
  27. Athar HR, Ashraf M (2009) Strategies for crop improvement against salinity and drought stress: an overview. Salinity and water stress. Springer, Dordrecht, pp 1–16Google Scholar
  28. Bano A, Fatima M (2009) Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413CrossRefGoogle Scholar
  29. Bano Q, Ilyas N, Bano A, Zafar N, Akram A, Hassan F (2013) Effect of Azospirillum inoculation on maize (Zea mays L.) under drought stress. Pak J Bot 45(S1):13–20Google Scholar
  30. Barka EA, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7252CrossRefGoogle Scholar
  31. Barnawal D, Bharti N, Pandey SS, Pandey A, Chanotiya CS, Kalra A (2017) Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiol Plant 161:502–514CrossRefGoogle Scholar
  32. Basak BB, Biswas DR (2010) Co-inoculation of potassium solubilizing and nitrogen fixing bacteria on solubilization of waste mica and their effect on growth promotion and nutrient acquisition by a forage crop. Biol Fer Soil 46(6):641–648CrossRefGoogle Scholar
  33. Basu S, Ramegowda V, Kumar A, Pereira A (2016) Plant adaptation to drought stress. F1000Res. 5:F1000 Faculty Rev-1554Google Scholar
  34. Beneduzi A, Ambrosini A, Passaglia LM (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35(4):1044–1051CrossRefPubMedPubMedCentralGoogle Scholar
  35. Bharti N, Pandey SS, Barnawal D, Patel VK, Kalra A (2016) Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep 6:34768. Scholar
  36. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. W J Microbiol Biotechnol 28(4):1327–1350CrossRefGoogle Scholar
  37. Bindu GH, Selvakuma G, Shivashankara KS, Kumar NS (2018) Osmotolerant plant growth promoting bacterial inoculation enhances the antioxidant enzyme levels of tomato plants under water stress conditions. Int J Curr Microbiol Appl Sci 7(1):2824–2833CrossRefGoogle Scholar
  38. Binzel ML, Hasegawa PM, Rhodes D, Handa S, Handa AK, Bressan RA (1987) Solute accumulation in tobacco cells adapted to NaCl. Plant Physiol 84(4):1408–1415CrossRefPubMedPubMedCentralGoogle Scholar
  39. Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433(7021):39CrossRefGoogle Scholar
  40. Blum A (2005) Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Aust J Agri Res 56(11):1159–1168CrossRefGoogle Scholar
  41. Blum A (2014) Genomics for drought resistance–getting down to earth. Func Plant Biol 41(11):1191–1198CrossRefGoogle Scholar
  42. Boiero L, Perrig D, Masciarelli O, Penna C, Cassán F, Luna V (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74(4):874–880CrossRefGoogle Scholar
  43. Bresson J, Varoquaux F, Bontpart T, Touraine B, Vile D (2013) The PGPR strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis. New Phytol 200(2):558–569CrossRefGoogle Scholar
  44. Butt HI, Yang Z, Gong Q, Chen E, Wang X, Zhao G, Li F (2017) GaMYB85 an R2R3 MYB gene, in transgenic Arabidopsis plays an important role in drought tolerance. BMC Plant Biol 17(1):142CrossRefPubMedPubMedCentralGoogle Scholar
  45. Casanovas EM, Barassi C A, Sueldo RJ (2002) Azospirillum inoculation mitigates water stress effects in maize seedlings. Cereal Res Commun 343–350Google Scholar
  46. Cassán F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45(1):28–35Google Scholar
  47. Cassán F, Vanderleyden J, Spaepen S (2014) Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. J Plant Growth Regul 33:440–459CrossRefGoogle Scholar
  48. Castillo P, Escalante M, Gallardo M, Alemano S, Abdala G (2013) Effects of bacterial single inoculation and co-inoculation on growth and phytohormone production of sunflower seedlings under water stress. Acta Physiol Plant 35(7):2299–2309CrossRefGoogle Scholar
  49. Chakraborty U, Roy S, Chakraborty AP, Dey P, Chakraborty B (2011) Plant growth promotion and amelioration of salinity stress in crop plants by a salt-tolerant bacterium. Recent Res Sci Technol 3:11Google Scholar
  50. Chang P, Gerhardt KE, Huang XD, Yu XM, Glick BR, Gerwing PD, Greenberg BM (2014) Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: implications for phytoremediation of saline soils. Int J Phytoremed 16(11):1133–1147CrossRefGoogle Scholar
  51. Chartzoulakis K, Klapaki G (2000) Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Sci Horticul 86(3):247–260CrossRefGoogle Scholar
  52. Chauhan AK, Maheshwari DK, Kim K, Bajpai VK (2016) Termitarium-inhabiting Bacillus endophyticus TSH42 and Bacillus cereus TSH77 colonizing Curcuma longa L.: isolation, characterization, and evaluation of their biocontrol and plant-growth-promoting activities. Can J Microbiol 62(10):880–892Google Scholar
  53. Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55(407):2365–2384CrossRefGoogle Scholar
  54. Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annal Bot 103(4):551–560CrossRefGoogle Scholar
  55. Chen TH, Murata N (2008) Glycinebetaine, an effective protectant against abiotic stress in plants. Trend Plant Sci 13:499–505CrossRefGoogle Scholar
  56. Chen H, Li Z, Xiong L (2012) A plant microRNA regulates the adaptation of roots to drought stress. Febs Lett 586(12):1742–1747CrossRefGoogle Scholar
  57. Chen L, Liu Y, Wu G, Veronican Njeri K, Shen Q, Zhang N, Zhang R (2016) Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9. Physiol Plant 158(1):34–44CrossRefGoogle Scholar
  58. Chen M, Wei H, Cao J, Liu R, Wang Y, Zheng C (2007) Expression of Bacillus subtilis proBA genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabidopsis. J Biochem Mol Biol 40:396–403PubMedGoogle Scholar
  59. Chen X, Wang Y, Lv B, Li J, Luo L, Lu S, Ming F (2014) The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway. Plant Cell Physiol 55(3):604–619CrossRefGoogle Scholar
  60. Cho UH, Park JO (2000) Mercury-induced oxidative stress in tomato seedlings. Plant Sci 156(1):1–9CrossRefGoogle Scholar
  61. Choudhary DK (2012) Microbial rescue to plant under habitat-imposed abiotic and biotic stresses. Appl Microbiol Biotechnol 96(5):1137–1155CrossRefGoogle Scholar
  62. Choudhary DK, Kasotia A, Jain S, Vaishnav A, Kumari S, Sharma KP, Varma A (2015) Bacterial-mediated tolerance and resistance to plants under abiotic and biotic stresses. J Plant Growth Regul 35:276–300CrossRefGoogle Scholar
  63. Choudhary DK, Kasotia A, Jain S, Vaishnav A, Kumari S, Sharma KP, Varma A (2016) Bacterial-mediated tolerance and resistance to plants under abiotic and biotic stresses. J Plant Growth Regul 35(1):276–300CrossRefGoogle Scholar
  64. Chowdhury SP, Hartmann A, Gao X, Borriss R (2015) Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42–a review. Front Microbiol 6:780CrossRefPubMedPubMedCentralGoogle Scholar
  65. Claeys H, Inzé D (2013) The agony of choice: how plants balance growth and survival under water-limiting conditions. Plant Physiol 113Google Scholar
  66. Cohen AC, Bottini R, Piccoli PN (2008) Azospirillum brasilense Sp 245 produces ABA in chemically-defined culture medium and increases ABA content in arabidopsis plants. Plant Growth Regul 54(2):97–103CrossRefGoogle Scholar
  67. Cohen AC, Bottini R, Pontin M, Berli FJ, Moreno D, Boccanlandro H, Piccoli PN (2015) Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiol Plant 153(1):79–90CrossRefGoogle Scholar
  68. Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Bot 87(5):455–462CrossRefGoogle Scholar
  69. Cominelli E, Conti L, Tonelli C, Galbiati M (2013) Challenges and perspectives to improve crop drought and salinity tolerance. New Biotechnol 30(4):355–361CrossRefGoogle Scholar
  70. Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Barka EA (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71(4):1685–1693Google Scholar
  71. Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Can J Bot 82:273–281CrossRefGoogle Scholar
  72. Dar ZM, Masood A, Mughal AH, Asif M, Malik MA (2018) Review on Drought Tolerance in Plants Induced by Plant Growth Promoting Rhizobacteria. Int J Curr Microbiol Appl Sci 7(5):1.,%20et%20al.pdf
  73. Dardanelli MS, Fernández de Córdoba FJ, Espuny MR, Rodríguez Carvajal MA, Soria Díaz ME, Gil Serrano AM, Okon Y, Megías M (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40:2713–2721CrossRefGoogle Scholar
  74. Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53CrossRefGoogle Scholar
  75. Davies PJ (2013) Plant hormones: physiology, biochemistry and molecular biology. Springer Science & Business Media, p 796Google Scholar
  76. De Micco V, Aronne G (2009) Seasonal dimorphism in wood anatomy of the Mediterranean Cistus incanus L. subsp. incanus. Trees 23(5):981–989Google Scholar
  77. del Amor FM, Cuadra-Crespo P (2012) Plant growth-promoting bacteria as a tool to improve salinity tolerance in sweet pepper. Funct Plant Biol 39:82–90CrossRefGoogle Scholar
  78. Demmig-Adams B, Adams WW (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172(1):11–21CrossRefPubMedPubMedCentralGoogle Scholar
  79. Dimkpa C, Weinand T, Asch F (2009) Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant, Cell Environ 32(12):1682–1694CrossRefGoogle Scholar
  80. Dinesh R, Srinivasan V, Hamza S, Sarathambal C, Anke Gowda SJ, Ganeshamurthy AN, Divya VC (2018) Isolation and characterization of potential Zn solubilizing bacteria from soil and its effects on soil Zn release rates, soil available Zn and plant Zn content. Geoderma 321:173–186CrossRefGoogle Scholar
  81. Divya B, Kumar MD (2011) Plant-microbe interaction with enhanced bioremediation. Res J Biotechnol 6(1):72–79Google Scholar
  82. Dodd IC, Belimov AA, Sobeih WY, Safronova VI, Grierson D, Davies WJ (2005) Will modifying plant ethylene status improve plant productivity in water limited environments? In: 4th International crop science congressGoogle Scholar
  83. Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157(3):361–379CrossRefGoogle Scholar
  84. Dodd IC, Pérez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63(9):3415–3428CrossRefPubMedPubMedCentralGoogle Scholar
  85. Du H, Wang N, Cui F, Li X, Xiao J, Xiong L (2010) Characterization of a β-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and ABA synthesis in rice. Plant Physiol 110Google Scholar
  86. Egamberdieva D (2013) The role of phytohormone producing bacteria in alleviating salt stress in crop plants. Biotechnological techniques of stress tolerance in plants. Biotechnological techniques of stress tolerance in plants. Studium, Houston, TX, pp 21–39Google Scholar
  87. El-Hendawy SE, Hu Y, Yakout GM, Awad AM, Hafiz SE, Schmidhalter U (2005) Evaluating salt tolerance of wheat genotypes using multiple parameters. Eur J Agr 22(3):243–253CrossRefGoogle Scholar
  88. Elnaggar AA, Noller JS (2009) Application of remote-sensing data and decision-tree analysis to mapping salt-affected soils over large areas. Remote Sens 2(1):151–165CrossRefGoogle Scholar
  89. Fan X, Hu H, Huang G, Huang F, Li Y, Palta J (2015) Soil inoculation with Burkholderia sp. LD-11 has positive effect on water-use efficiency in inbred lines of maize. Plant Soil 390(1–2): 337–349Google Scholar
  90. Farooq M, Basra SMA, Wahid A, Cheema ZA, Cheema MA, Khaliq A (2008) Physiological role of exogenously applied glycinebetaine to improve drought tolerance in fine grain aromatic rice (Oryza sativa L.). J Agr Crop Sci 194(5):325–333Google Scholar
  91. Figueiredo MVB, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by coinoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188CrossRefGoogle Scholar
  92. Flowers TJ (2004) Improving crop salt tolerance. J Exp Botany 55(396):307–319CrossRefGoogle Scholar
  93. Foyer CH, Rasool B, Davey JW, Hancock RD (2016) Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation. J Exp Bot 67(7):2025–2037CrossRefGoogle Scholar
  94. Fukao T, Xu K, Ronald PC, Bailey-Serres J (2006) A variable cluster of ethylene response factor–like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18(8):2021–2034CrossRefPubMedPubMedCentralGoogle Scholar
  95. Gao S, Ouyang C, Wang S, Xu Y, Tang L, Chen F (2008) Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedlings. Plant Soil Environ 54(9):374–381Google Scholar
  96. García de Salamone IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47(5):404–411CrossRefGoogle Scholar
  97. Ghassemi F, Jakeman AJ, Nix HA (1995) Salinisation of land and water resources: human causes, extent, management and case studies. CAB International, p 544Google Scholar
  98. Ghorbanpour M, Hatami M, Khavazi K (2013) Role of plant growth promoting rhizobacteria on antioxidant enzyme activities and tropane alkaloid production of Hyoscyamus niger under water deficit stress. Turkish J Biol 37(3):350–360Google Scholar
  99. Gilroy S, Suzuki N, Miller G, Choi WG, Toyota M, Devireddy AR, Mittler R (2014) A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trend Plant Sci 19(10):623–630CrossRefGoogle Scholar
  100. Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre JC, Bena G (2007) Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia. Science 316(5829):1307–1312CrossRefPubMedPubMedCentralGoogle Scholar
  101. Glick BR (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242CrossRefGoogle Scholar
  102. Glick BR, Pasternak JJ (2003) Plant growth promoting bacteria. In: Molecular biology-principles and applications of recombinant DNA, pp 436–454Google Scholar
  103. Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190(1):63–68CrossRefGoogle Scholar
  104. Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agri 2(1):1127500Google Scholar
  105. Goteti PK, Emmanuel LDA, Desai S, Shaik MHA (2013) Prospective zinc solubilising bacteria for enhanced nutrient uptake and growth promotion in maize (Zea mays L.). Int J Microbiol 2013: Article ID 869697Google Scholar
  106. Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK (2017) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbio Res 206:131–140CrossRefGoogle Scholar
  107. Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol Biochem 37(3):395–412CrossRefGoogle Scholar
  108. Grover M, Madhubala R, Ali SZ, Yadav SK, Venkateswarlu B (2014) Influence of Bacillus spp. strains on seedling growth and physiological parameters of sorghum under moisture stress conditions. J Basic Microbiol 54(9):951–961Google Scholar
  109. Gunes A, Inal A, Alpaslan M, Cicek N, Guneri E, Eraslan F, Guzelordu T (2005) Effects of exogenously applied salicylic acid on the induction of multiple stress tolerance and mineral nutrition in maize (Zea mays L.). Arch Agr Soil Sci 51(6):687–695Google Scholar
  110. Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci EG, Cicek N (2007) Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol 164(6):728–736Google Scholar
  111. Gururani MA, Upadhyaya CP, Baskar V, Venkatesh J, Nookaraju A, Park SW (2013) Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. J Plant Growth Reg 32(2):245–258CrossRefGoogle Scholar
  112. Habib SH, Kausar H, Saud HM (2016) Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. BioMed Res Int 2016: Article ID 6284547Google Scholar
  113. Hafeez B, Khanif YM, Saleem M (2013) Role of zinc in plant nutrition-a review. Am J Exp Agri 3(2):374Google Scholar
  114. Hahm MS, Son JS, Hwang YJ, Kwon DK, and Ghim SY (2017) Alleviation of salt stress in pepper (Capsicum annum L.) plants by plant growth-promoting rhizobacteria. J Microbiol Biotechnol 27(10):1790–1797Google Scholar
  115. Hamdia MAES, Shaddad MAK, Doaa MM (2004) Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Reg 44(2):165–174CrossRefGoogle Scholar
  116. Han D, Wang L, Luo Y (2018) Isolation, identification, and the growth promoting effects of two antagonistic actinomycete strains from the rhizosphere of Mikania micrantha Kunth. Microbiol Res 208:1–11CrossRefPubMedPubMedCentralGoogle Scholar
  117. Hasegawa PM (2013) Sodium (Na+) homeostasis and salt tolerance of plants. Environ Exp Bot 92:19–31CrossRefGoogle Scholar
  118. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Biol 51(1):463–499CrossRefGoogle Scholar
  119. He AL, Niu SQ, Zhao Q, Li YS, Gou JY, Gao HJ, Zhang JL (2018) Induced salt tolerance of perennial ryegrass by a novel bacterium strain from the rhizosphere of a desert shrub Haloxylon ammodendron. Int J Mole Sci 19(2):469CrossRefGoogle Scholar
  120. Hontzeas N, Saleh SS, Glick BR (2004) Changes in gene expression in canola roots induced by ACC-deaminase-containing plant-growth-promoting bacteria. Mol Plant Microb Inter 17(8):865–871CrossRefGoogle Scholar
  121. Iqbal N, Umar S, Nazar R (2014) Manipulating osmolytes for breeding salinity-tolerant plants. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance a sustainable approach. Elsevier Inc., UK. ISBN: 978-0-12-800875-1Google Scholar
  122. Islam S, Akanda AM, Prova A, Islam MT, Hossain MM (2016) Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Front Microbiol 6:1360CrossRefPubMedPubMedCentralGoogle Scholar
  123. Jampeetong A, Brix H (2009) Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans. Aquat Bot 91(3):181–186CrossRefGoogle Scholar
  124. Janssen J, Weyens N, Croes S, Beckers B, Meiresonne L, Van Peteghem P, Vangronsveld J (2015) Phytoremediation of metal contaminated soil using willow: exploiting plant-associated bacteria to improve biomass production and metal uptake. Int J Phytorem 17(11):1123–1136CrossRefGoogle Scholar
  125. Jarvis PG, Jarvis MS (1963) The water relations of tree seedlings: IV. Some aspects of the tissue water relations and drought resistance. Physiol Plant 16(3):501–516Google Scholar
  126. Jha Y, Subramanian RB, Patel S (2011) Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33:797–802CrossRefGoogle Scholar
  127. Jha Y, Subramanian RB (2013) Paddy plants inoculated with PGPR show better growth physiology and nutrient content under saline conditions. Chil J Agric Res 73(3):213–219CrossRefGoogle Scholar
  128. Jha Y, Subramanian RB (2014) PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity. Physiol Mole Biol Plant 20(2):201–207CrossRefGoogle Scholar
  129. Ji X, Dong B, Shiran B, Talbot MJ, Edlington JE, Hughes T, Dolferus R (2011) Control of abscisic acid catabolism and abscisic acid homeostasis is important for reproductive stage stress tolerance in cereals. Plant Physiol 156(2):647–662CrossRefPubMedPubMedCentralGoogle Scholar
  130. Jin CW, Ye YQ, Zheng SJ (2013) An underground tale: contribution of microbial activity to plant iron acquisition via ecological processes. Ann Bot 113(1):7–18CrossRefPubMedPubMedCentralGoogle Scholar
  131. Joseph EA, Mohanan KV (2013) A study on the effect of salinity stress on the growth and yield of some native rice cultivars of Kerala state of India. Agric Fores Fisher 2(3):141–150CrossRefGoogle Scholar
  132. Kamal R, Gusain YS, Kumar V (2014) Interaction and symbiosis of AM fungi, Actinomycetes and Plant Growth Promoting Rhizobacteria with plants: strategies for the improvement of plants health and defense system. Int J Curr Microbiol Appl Sci 3(7):564–585Google Scholar
  133. Kamei A, Dolai AK, Kamei A (2014) Role of hydrogen cyanide secondary metabolite of plant growth promoting rhizobacteria as biopesticides of weeds. Global J Sci Front Res 14(6):109–112Google Scholar
  134. Kamran S, Shahid I, Baig DN, Rizwan M, Malik KA, Mehnaz S (2017) Contribution of zinc solubilizing bacteria in growth promotion and zinc content of wheat. Front Microbiol 8:2593CrossRefPubMedPubMedCentralGoogle Scholar
  135. Kang SM, Radhakrishnan R, Khan AL, Kim M-J, Park JM, Kim BR, Shin D-H, Lee IJ (2014a) Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol Biochem 84:115–124CrossRefPubMedPubMedCentralGoogle Scholar
  136. Kang SM, Khan AL, Hamayun M, Hussain J, Joo GJ, You YH, Lee IJ (2012) Gibberellin-producing Promicromonospora sp. SE188 improves Solanum lycopersicum plant growth and influences endogenous plant hormones. J Microbiol 50(6):902–909Google Scholar
  137. Kang SM, Khan AL, Waqas M, You YH, Kim JH, Kim JG, Lee IJ (2014b) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Inter 9(1):673–682Google Scholar
  138. Karlidag H, Ertan Y, Metin T, Mucahit P, Figen D (2013) Plant growth-promoting rhizobacteria mitigate deleterious effects of salt stress on strawberry plants (Fragaria ananassa). HortScience 48(5):563–567CrossRefGoogle Scholar
  139. Kasim WA, Osman ME, Omar MN, El-Daim IAA, Bejai S, Meijer J (2013) Control of drought stress in wheat using plant-growth-promoting bacteria. J Plant Growth Reg 32(1):122–130CrossRefGoogle Scholar
  140. Kaur G, Asthir B (2017) Molecular responses to drought stress in plants. Biol Plant 61(2):201–209CrossRefGoogle Scholar
  141. Kaushal M, Wani SP (2016) Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann Microbiol 66(1):35–42CrossRefGoogle Scholar
  142. Kaya C, Ashraf M, Dikilitas M, Tuna AL (2013) Alleviation of salt stress-induced adverse effects on maize plants by exogenous application of indoleacetic acid (IAA) and inorganic nutrients-a field trial. Aust J Crop Sci 7(2):249Google Scholar
  143. Kaya C, Tuna AL, Okant AM (2010) Effect of foliar applied kinetin and indole acetic acid on maize plants grown under saline conditions. Turk J Agric For 34(6):529–538Google Scholar
  144. Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170:319–330CrossRefPubMedPubMedCentralGoogle Scholar
  145. Khalid S, Parvaiz M, Nawaz K, Hussain H, Arshad A, Shawaka S, Sarfaraz Z, Waheed T (2013) Effect of Indole Acetic Acid (IAA) on morphological: biochemical and chemical attributes of Two varieties of maize (Zea mays L.) under salt stress. World Appl Sci J 26:1150–1159Google Scholar
  146. Khodair TA, Galal GF, El-Tayeb TS (2008) Effect of inoculating wheat seedlings with exopolysaccharide-producing bacteria in saline soil. J Appl Sci Res 4:2065–2070Google Scholar
  147. Kiani SP, Talia P, Maury P, Grieu P, Heinz R, Perrault A, Sarrafi A (2007) Genetic analysis of plant water status and osmotic adjustment in recombinant inbred lines of sunflower under two water treatments. Plant Sci 172(4):773–787CrossRefGoogle Scholar
  148. Kim J, Rees DC (1994) Nitrogenase and biological nitrogen fixation. Biochem 33(2):389–397CrossRefGoogle Scholar
  149. Kloepper JW, Reddy MS, Kenney DS, Kokalis-Burelle N, Martinez-Ochoa N, Vavrina CS (2004) Theory and application for rhizobacteria in transplant production and yield enhancement. Acta Horticul 631:219–229CrossRefGoogle Scholar
  150. Kohler J, Hernández JA, Caravacaa F, Roldána A (2008) Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35:141–151CrossRefGoogle Scholar
  151. Kohler J, Hernández JA, Caravaca F, Roldán A (2009) Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ Exp Botany 65(2–3):245–252CrossRefGoogle Scholar
  152. Kuan KB, Othman R, Rahim KA, Shamsuddin ZH (2016) Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS One 11(3):e0152478CrossRefPubMedPubMedCentralGoogle Scholar
  153. Kudoyarova GR, Melentiev AI, Martynenko EV, Timergalina LN, Arkhipova TN, Shendel GV, Veselov SY (2014) Cytokinin producing bacteria stimulate amino acid deposition by wheat roots. Plant Physiol Biochem 83:285–291CrossRefPubMedPubMedCentralGoogle Scholar
  154. Kumar A, Dixit S, Ram T, Yadaw RB, Mishra KK, Mandal NP (2014) Breeding high-yielding drought-tolerant rice: genetic variations and conventional and molecular approaches. J Exp Bot 65(21):6265–6278CrossRefPubMedPubMedCentralGoogle Scholar
  155. Kumar D (2005) Breeding for drought resistance. In: Abiotic stresses. CRC Press, pp 167–198Google Scholar
  156. Kumari S, Vaishnav A, Jain S, Varma A, Choudhary DK (2015) Bacterial-mediated induction of systemic tolerance to salinity with expression of stress alleviating enzymes in soybean (Glycine max L. Merrill). J Plant Growth Regul 34:558–573CrossRefGoogle Scholar
  157. Lawlor DW (2002) Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. J Exp Bot 53(370):773–787CrossRefPubMedPubMedCentralGoogle Scholar
  158. Liang C, Wang Y, Zhu Y, Tang J, Hu B, Liu L, Chu C (2014) OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci 111(27):10013–10018CrossRefPubMedPubMedCentralGoogle Scholar
  159. Lim JH, Kim SD (2013) Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol J 29(2):201CrossRefPubMedPubMedCentralGoogle Scholar
  160. Liu XM, Zhang H (2015) The effects of bacterial volatile emissions on plant abiotic stress tolerance. Front Plant Sci 6:774PubMedPubMedCentralGoogle Scholar
  161. Liu B, Asseng S, Müller C, Ewert F, Elliott J, Lobell DB, Rosenzweig C (2016) Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat Climat Chang 6(12):1130CrossRefGoogle Scholar
  162. Liu J, Xia Z, Wang M, Zhang X, Yang T, Wu J (2013) Overexpression of a maize E3 ubiquitin ligase gene enhances drought tolerance through regulating stomatal aperture and antioxidant system in transgenic tobacco. Plant Physio Biochem 73:114–120CrossRefGoogle Scholar
  163. Lu GH, Ren DL, Wang XQ, Wu JK, Zhao MS (2010) Evaluation on drought tolerance of maize hybrids in China. J Maize Sci 3:20–24Google Scholar
  164. Lugtenberg BJ, Malfanova N, Kamilova F, Berg G (2013) Plant growth promotion by microbes. Mole Microbial Ecol Rhizosphere 2:561–573Google Scholar
  165. Ma W, Penrose DM, Glick BR (2002) Strategies used by rhizobia to lower plant ethylene levels and increase nodulation. Can J Microbiol 48(11):947–954CrossRefPubMedGoogle Scholar
  166. Madhaiyan M, Poonguzhali S, Ryu J, Sa T (2006) Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224(2):268–278CrossRefPubMedGoogle Scholar
  167. Maheshwari DK, Aeron A, Dubey RC, Agarwal M, Dheeman S, Shukla S (2014) Multifaceted beneficial associations with Pseudomonas and rhizobia on growth promotion of Mucuna pruriens L. J Pure Appl Microbiol 8(6):4657–4667Google Scholar
  168. Maheshwari DK, Kumar S, Kumar B, Pandey P (2010) Co-inoculation of urea and DAP tolerant Sinorhizobium meliloti and Pseudomonas aeruginosa as integrated approach for growth enhancement of Brassica juncea. Ind J Microbiol 50(4):425–431CrossRefGoogle Scholar
  169. Mahmood S, Daur I, Al-Solaimani SG, Ahmad S, Madkour MH, Yasir M, Ali Z (2016) Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean. Front Plant Sci 7:876PubMedPubMedCentralGoogle Scholar
  170. Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 55(394):27–34CrossRefPubMedPubMedCentralGoogle Scholar
  171. Mapelli F, Marasco R, Rolli E, Barbato M, Cherif H, Guesmi A, Ouzari I, Daffonchio D, Borin S (2013) Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils. Biomed Res Int 2013:248078CrossRefPubMedPubMedCentralGoogle Scholar
  172. Maqbool MA, Aslam M, Ali H (2017) Breeding for improved drought tolerance in Chickpea (Cicer arietinum L.). Plant Breed 136(3):300–318Google Scholar
  173. Marulanda A, Porcel R, Barea JM, Azcón R (2007) Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus species. Microb Ecol 54:543–552CrossRefPubMedPubMedCentralGoogle Scholar
  174. Marulanda A, Azcon R, Chaumont F, Ruiz-Lozano JM, Aroca R (2010) Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta 232:533–543CrossRefPubMedPubMedCentralGoogle Scholar
  175. Marulanda A, Barea JM, Azcón R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Reg 28(2):115–124CrossRefGoogle Scholar
  176. Mayak S, Tirosh T, Glick BR (2004a) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572CrossRefPubMedPubMedCentralGoogle Scholar
  177. Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166(2):525–530CrossRefGoogle Scholar
  178. Meena MK, Gupta S, Datta S (2016) Antifungal potential of PGPR, their growth promoting activity on seed germination and seedling growth of winter wheat and genetic variabilities among bacterial isolates. Int J Cur Microbiol Appl Sci 5(1):235–243CrossRefGoogle Scholar
  179. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37(5):634–663CrossRefGoogle Scholar
  180. Mhadhbi H, Jebara M, Limam F, Aouani ME (2004) Rhizobial strain involvement in plant growth, nodule protein composition and antioxidant enzyme activities of chickpea-rhizobia symbioses: modulation by salt stress. Plant Physiol Biochem 42(9):717–722CrossRefGoogle Scholar
  181. Maheshwari DK (ed) (2010) Microbiology monographs (V-18). Plant growth and health promoting bacteria. Springer, Heidelberg, Germany. ISBN: 978-3-642-13611-5Google Scholar
  182. Minerdi D, Bossi S, Maffei ME, Gullino ML, Garibaldi A (2011) Fusarium oxysporum and its bacterial consortium promote lettuce growth and expansin A5 gene expression through microbial volatile organic compound (MVOC) emission. FEMS Microbiol Ecol 76(2):342–351CrossRefGoogle Scholar
  183. Minocheherhomji A, Yasmin H, Naz R, Bano A, Keyani R, Hussain I (2018) Pseudomonas putida improved soil enzyme activity and growth of kasumbha under low input of mineral fertilizers. Soil Sci Plant Nut 1–6Google Scholar
  184. Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Ann Rev Plant Biol 61:443–462CrossRefGoogle Scholar
  185. Munns R (2002) Salinity, growth and phytohormones. In: Salinity: environment-plants-molecules, Springer Dordrecht 271–290Google Scholar
  186. Munns R, Gilliham M (2015) Salinity tolerance of crops–what is the cost? New Phytol 208(3):668–673CrossRefGoogle Scholar
  187. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681CrossRefPubMedPubMedCentralGoogle Scholar
  188. Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Plett D (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30(4):360CrossRefPubMedPubMedCentralGoogle Scholar
  189. Mwadzingeni L, Shimelis H, Dube E, Laing MD, Tsilo TJ (2016) Breeding wheat for drought tolerance: progress and technologies. J Integ Agric 15(5):935–943CrossRefGoogle Scholar
  190. Nabti E, Sahnoune M, Adjrad S, Van Dommelen A, Ghoul M, Schmid M, Hartmann A (2007) A halophilic and osmotolerant Azospirillum brasilense strain from Algerian soil restores wheat growth under saline conditions. Eng Life Sci 7(4):354–360CrossRefGoogle Scholar
  191. Nabti E, Sahnoune M, Ghoul M, Fischer D, Hofmann A, Rothballer M, Schmid M, Hartmann A, (2010) Restoration of growth of durum wheat (Triticum durum var. waha) under saline conditions due to inoculation with the rhizosphere bacterium Azospirillum brasilense NH and extracts of the marine alga Ulva lactuca. J Plant Growth Regul 29 (1):6–22Google Scholar
  192. Nadeem SM, Zahir ZA, Naveed M, Arshad M (2007) Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 53(10):1141–1149CrossRefGoogle Scholar
  193. Nadeem SM, Zahir ZA, Naveed M, Arshad M (2009) Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields. Can J Microbiol 55(11):1302–1309CrossRefGoogle Scholar
  194. Nadeem SM, Zahir ZA, Naveed M, Nawaz S (2013) Mitigation of salinity-induced negative impact on the growth and yield of wheat by plant growth-promoting rhizobacteria in naturally saline conditions. Anna Microbiol 63(1):225–232CrossRefGoogle Scholar
  195. Narula N, Kothe E, Behl RK (2009) Role of root exudates in plant-microbe interactions. J Appl Bot Food Qual 82(2):122–130Google Scholar
  196. Naseem H, Bano A (2014) Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J Plant Interact 9(1):689–701CrossRefGoogle Scholar
  197. Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9CrossRefGoogle Scholar
  198. Naveed M, Mitter B, Reichenauer TG, Wieczorek K, Sessitsch A (2014) Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ Exp Bot 97:30–39CrossRefGoogle Scholar
  199. Nawrotzki RJ, Bakhtsiyarava M (2017) International climate migration: evidence for the climate inhibitor mechanism and the agricultural pathway. Popul Space Place 23(4):e2033CrossRefGoogle Scholar
  200. Naz R, Bano A (2013) Influence of exogenously applied SA and PGPR inoculation on the growth and physiology of sunflower (Helianthus annus L.) under salt stress. Pak J Bot 45(2):367–373Google Scholar
  201. Naz R, Bano A (2015) Molecular and Physiological responses of Sunflower (Helianthus annus L.) to PGPR and SA under Salt Stress. Pak J Bot 47(1):35–42Google Scholar
  202. Naz I, Bano A, Ul-Hassan T (2009) Isolation of phytohormones producing plant growth promoting rhizobacteria from weeds growing in Khewra salt range, Pakistan and their implication in providing salt tolerance to Glycine max L. Afr J Biotechnol 8:21Google Scholar
  203. Negrão S, Courtois B, Ahmadi N, Abreu I, Saibo N, Oliveira MM (2011) Recent updates on salinity stress in rice: from physiological to molecular responses. Crit Rev Plant Sci 30(4):329–377CrossRefGoogle Scholar
  204. Negrão S, Schmöckel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119(1):1–11CrossRefGoogle Scholar
  205. Neumann PM (1995) The role of cell wall adjustments in plant resistance to water deficits. Crop Sci 35(5):1258–1266CrossRefGoogle Scholar
  206. Neumann PM (2008) Coping mechanisms for crop plants in drought-prone environments. Anna Bot 101(7):901–907CrossRefGoogle Scholar
  207. Ngumbi EN (2011) Mechanisms of olfaction in parasitic wasps: analytical and behavioral studies of response of a specialist (Microplitis croceipes) and a generalist (Cotesia marginiventris) parasitoid to host-related odor. PhD thesis, Auburn University, Albama USAGoogle Scholar
  208. Ngumbi E, Kloepper J (2016) Bacterial-mediated drought tolerance: current and future prospects. Appl Soil Ecol 105:109–125CrossRefGoogle Scholar
  209. Nie M, Wang Y, Yu J, Xiao M, Jiang L, Yang J, Li B (2011) Understanding plant-microbe interactions for phytoremediation of petroleum-polluted soil. PLoS One 6(3):e17961CrossRefPubMedPubMedCentralGoogle Scholar
  210. Niu SQ, Li HR, Paré PW, Aziz M, Wang SM, Shi H, Guo Q (2016) Induced growth promotion and higher salt tolerance in the halophyte grass Puccinellia tenuiflora by beneficial rhizobacteria. Plant Soil 407(1–2):217–230CrossRefGoogle Scholar
  211. Nosheen A, Yasmin H, Naz R, Bano A, Keyani R, Hussain I (2018) improved soil enzyme activity and growth of kasumbha under low input of mineral fertilizers. Soil Sci Plant Nut 1–6Google Scholar
  212. Numan M, Bashir S, Khan Y, Mumtaz R, Shinwari ZK, Khan AL, Ahmed AH (2018) Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiol Res 209:21–32CrossRefPubMedPubMedCentralGoogle Scholar
  213. Öğüt M, Er F, Neumann G (2011) Increased proton extrusion of wheat roots by inoculation with phosphorus solubilising microorganims. Plant Soil 339(1–2):285–297CrossRefGoogle Scholar
  214. Ortíz-Castro R, Valencia-Cantero E, López-Bucio J (2008) Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Sig Beh 3(4):263–265CrossRefGoogle Scholar
  215. Palaniyandi SA, Damodharan K, Yang SH, Suh JW (2014) Streptomyces sp. strain PGPA39 alleviates salt stress and promotes growth of ‘Micro Tom’ tomato plants. J Appl Microbiol 117(3):766–773Google Scholar
  216. Panwar M, Tewari R, Gulati A, Nayyar H (2016) Indigenous salt-tolerant rhizobacterium Pantoea dispersa (PSB3) reduces sodium uptake and mitigates the effects of salt stress on growth and yield of chickpea. Acta Physiol Plant 38:278CrossRefGoogle Scholar
  217. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60(3):324–349CrossRefPubMedPubMedCentralGoogle Scholar
  218. Parida AK, Das AB, Mittra B (2004) Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees 18(2):167–174CrossRefGoogle Scholar
  219. Patel TS, Minocheherhomji FP (2018) Plant growth promoting rhizobacteria: blessing to agriculture. Int J Pure Appl Biosci 6(2):481–492CrossRefGoogle Scholar
  220. Pawar ST, Bhosale AA, Gawade TB, Nale TR (2017) Isolation, screening and optimization of exopolysaccharide producing bacterium from saline soil. J Microbiol Biotechnol Res 3(3):24–31Google Scholar
  221. Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E (2011) Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnol J 9(7):747–758CrossRefPubMedPubMedCentralGoogle Scholar
  222. Peng S, Ismail AM (2004) Physiological basis of yield and environmental adaptation in rice. Physiol Biotechnol Integ Plant Breed 83–140Google Scholar
  223. Perata P, Voesenek LA (2007) Submergence tolerance in rice requires Sub1A, an ethylene-response-factor-like gene. Trend Plant Sci 12(2):43–46CrossRefGoogle Scholar
  224. Pereyra MA, Garcia P, Colabelli MN, Barassi CA, Creus CM (2012) A better water status in wheat seedlings induced by Azospirillum under osmotic stress is related to morphological changes in xylem vessels of the coleoptile. Appl Soil Ecol 53:94–97CrossRefGoogle Scholar
  225. Perrig D, Boiero M, Masciarelli O, Penna C, Ruiz O, Cassán F, Luna M (2007) Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Appl Microbiol Biotechno 75(5):1143–1150CrossRefGoogle Scholar
  226. Pitman MG, Läuchli A (2002) Global impact of salinity and agricultural ecosystems. In: Salinity: environment-plants-molecules. Springer, Dordrecht, pp 3–20Google Scholar
  227. Pliego C, Kamilova F, Lugtenberg B (2011) Plant growth-promoting bacteria: fundamentals and exploitation. In: Bacteria in Agrobiology: crop ecosystems, Springer, Berlin, pp 295–343Google Scholar
  228. Prajapati K, Sharma MC, Modi HA (2013) Growth promoting effect of potassium solubilizing microorganisms on Abelmoscus esculantus. Int J Agric Sci 3(1):181–188Google Scholar
  229. Prathap M, Kumari BR (2015) A critical review on plant growth promoting rhizobacteria. J Plant Pathol Microbiol 6(4):1Google Scholar
  230. Qadir M, Quillérou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Noble AD (2014) Economics of salt-induced land degradation and restoration. Nat Resour Forum 38(4):282–295CrossRefGoogle Scholar
  231. Qudsaia B, Noshinil Y, Asghari B, Nadia Z, Abida A, Fayazul H (2013) Effect of Azospirillum inoculation on maize (Zea mays L.) under drought stress. Pak J Bot 45:13–20Google Scholar
  232. Rais A, Jabeen Z, Shair F, Hafeez FY, Hassan MN (2017) Bacillus spp., a bio-control agent enhances the activity of antioxidant defense enzymes in rice against Pyricularia oryzae. Plos One 12(11):e0187412Google Scholar
  233. Ramadan EM, AbdelHafez AA, Hassan EA, Saber FM (2016) Plant growth promoting rhizobacteria and their potential for biocontrol of phytopathogens. Afri J Microbiol Res 10(15):486–504CrossRefGoogle Scholar
  234. Ramegowda V, Kumar S (2015) The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J Plant Physiol 176:47–54CrossRefPubMedPubMedCentralGoogle Scholar
  235. Rao SM, Shaw MEA (1985) A review of research on sugar cane soils of Jamaica. In: 23. Sugar technologists’ conference, (Trinidad and Tobago), 4–8 Mar 1985Google Scholar
  236. Rathore P (2014) A review on approaches to develop plant growth promoting rhizobacteria. Inter J Rec Sci Res 5:403–407Google Scholar
  237. Raza FA, Faisal M (2013) Growth promotion of maize by desiccation tolerant Micrococcus luteus-chp37 isolated from Cholistan desert. Pak Aust J Crop Sci 7(11):1693Google Scholar
  238. Rejeb KB, Abdelly C, Savouré A (2014) How reactive oxygen species and proline face stress together. Plant Physiol Biochem 80:278–284CrossRefPubMedPubMedCentralGoogle Scholar
  239. Rhodes D, Verslues PE, Sharp RE (1999) Role of amino acids in abiotic stress resistance. In: Singh BK (ed) Plant amino acids: biochem biotechnol marcel dekker NY, 319–356Google Scholar
  240. Rhodes D, Handa S (1989) Amino acid metabolism in relation to osmotic adjustment in plant cells. In: Environmen stress plant. Springer, Berlin 41–62Google Scholar
  241. Richards DE, King KE, Ait-ali T, Harberd NP (2001) How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellin signaling. Annu Rev Plant Physiol Plant Mol Biol 52:67–88CrossRefPubMedPubMedCentralGoogle Scholar
  242. Rijavec T, Lapanje A (2016) Hydrogen cyanide in the rhizosphere: not suppressing plant pathogens, but rather regulating availability of phosphate. Front Microbiol 7:1785CrossRefPubMedPubMedCentralGoogle Scholar
  243. Rodriguez-Salazar J, Suarez R, Caballero-Mellado J, Itturiaga G (2009) Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. FEMS Microbiol Lett 296:52–59CrossRefPubMedPubMedCentralGoogle Scholar
  244. Rojas-Tapias D, Moreno-Galván A, Pardo-Díaz S, Obando M, Rivera D, Bonilla R (2012) Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl Soil Ecol 61:264–272CrossRefGoogle Scholar
  245. Rowley G (1993) Multinational and national competition for water in the Middle East: Towards the deepening crisis. J Environ Manag 39(3):187–197CrossRefGoogle Scholar
  246. Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124CrossRefPubMedPubMedCentralGoogle Scholar
  247. Ruelland E, Vaultier MN, Zachowski A, Hurry V (2009) Cold signalling and cold acclimation in plants. Adv Bot Res 49:35–150CrossRefGoogle Scholar
  248. Saakre M, Baburao TM, Salim AP, Ffancies RM, Achuthan VP, Thomas G, Sivarajan SR (2017) Identification and characterization of genes responsible for drought tolerance in rice mediated by Pseudomonas fluorescens. Rice Sci 24(5):291–298CrossRefGoogle Scholar
  249. Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P (2016) Microbial siderophores and their potential applications: a review. Environ Sci Poll Res 23(5):3984–3999CrossRefGoogle Scholar
  250. Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21(1):30Google Scholar
  251. Sanalibaba P, Çakmak GA (2016) Exopolysaccharides production by lactic acid bacteria. Appl Microbiol 2:115Google Scholar
  252. Sandhya VSKZ, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2010) Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Reg 62(1):21–30Google Scholar
  253. Sandhya VZAS, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fer Soil 46(1):17–26CrossRefGoogle Scholar
  254. Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102(5):1283–1292CrossRefPubMedPubMedCentralGoogle Scholar
  255. Saravanakumar D, Kavino M, Raguchander T, Subbian P, Samiyappan R (2011) Plant growth promoting bacteria enhance water stress resistance in green gram plants. Acta Physiol Plant 33(1):203–209CrossRefGoogle Scholar
  256. Sarma RK, Saikia R (2014) Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21. Plant Soil 377(1–2):111–126CrossRefGoogle Scholar
  257. Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25(2):333–341CrossRefPubMedPubMedCentralGoogle Scholar
  258. Shafi M, Bakht J, Khan MJ, Khan MA, Anwar S (2010) Effect of salinity on yield and ion accumulation of wheat genotypes. Pak J Bot 4113–4121Google Scholar
  259. Shaharoona B, Arshad M, Zahir ZA (2006a) Effect of plant growth promoting rhizobacteria containing ACC‐deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett Appl Microbiol 42(2):155–159Google Scholar
  260. Shaharoona B, Arshad M, Zahir ZA, Khalid A (2006b) Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biol Biochem 38(9):2971–2975Google Scholar
  261. Shahzad SM, Arif MS, Riaz M, Iqbal Z, Ashraf M (2013) PGPR with varied ACC-deaminase activity induced different growth and yield response in maize (Zea mays L.) under fertilized conditions. Eur J Soil Biol 57:27–34CrossRefGoogle Scholar
  262. Sharma A, Shankhdhar D, Shankhdhar SC (2013) Enhancing grain iron content of rice by the application of plant growth promoting rhizobacteria. Plant Soil Environ 59(2):89–94CrossRefGoogle Scholar
  263. Sharma CK, Vishnoi VK, Dubey RC, Maheshwari DK (2018) A twin rhizospheric bacterial consortium induces systemic resistance to a phytopathogen Macrophomina phaseolina in mung bean. Rhizosphere 5:71–75CrossRefGoogle Scholar
  264. Sheteawi SA (2007) Improving growth and yield of salt-stressed soybean by exogenous application of jasmonic acid and ascobin. Inter J Agric Biol 2007
  265. Sheveleva E, Chmara W, Bohnert HJ, Jensen RG (1997) Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum L. Plant Physiol 115(3):1211–1219CrossRefPubMedPubMedCentralGoogle Scholar
  266. Shi H, Xiong L, Stevenson B, Lu T, Zhu JK (2002) The Arabidopsis salt overly sensitive 4 mutants uncover a critical role for vitamin B6 in plant salt tolerance. Plant Cell 14(3):575–588CrossRefPubMedPubMedCentralGoogle Scholar
  267. Shiferaw B, Smale M, Braun HJ, Duveiller E, Reynolds M, Muricho G (2013) Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Sec 5(3):291–317Google Scholar
  268. Shkolnik-Inbar D, Adler G, Bar-Zvi D (2013) ABI4 downregulates expression of the sodium transporter HKT1 in Arabidopsis roots and affects salt tolerance. Plant J 73:993–1005CrossRefPubMedPubMedCentralGoogle Scholar
  269. Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Sau J Biol Sci 22(2):123–131CrossRefGoogle Scholar
  270. Shukla PS, Agarwal PK, Jha B (2012) Improved salinity tolerance of Arachis hypogaea (L.) by the interaction of halotolerant plant growth promoting rhizobacteria. J Plant Growth Regul 31:195–206CrossRefGoogle Scholar
  271. Siddikee MA, Glick BR, Chauhan PS, Yim W, Sa T (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1 carboxylic acid deaminase activity. Plant Physiol Biochem 49:427–434CrossRefPubMedPubMedCentralGoogle Scholar
  272. Sinclair TR, Muchow RC (2001) System analysis of plant traits to increase grain yield on limited water supplies. Agric J 93(2):263–270Google Scholar
  273. Sindhu SS, Parmar P, Phour M (2014) Nutrient cycling: potassium solubilization by microorganisms and improvement of crop growth. In: Geomicrobiol Biogeochem. Springer, Berlin, 175–198Google Scholar
  274. Skirycz A, Inzé D (2010) More from less: plant growth under limited water. Curr Opin Biotechnol 21(2):197–203CrossRefPubMedPubMedCentralGoogle Scholar
  275. SkZ A, Vardharajula S, Vurukonda SSKP (2018) Transcriptomic profiling of maize (Zea mays L.) seedlings in response to Pseudomonas putida stain FBKV2 inoculation under drought stress. Ann Microbiol 68(6):331–349Google Scholar
  276. Smith DL, Gravel V, Yergeau E (2017) Signaling in the phytomicrobiome. Front Plant Sci 8:611CrossRefPubMedPubMedCentralGoogle Scholar
  277. Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30(4):205–240CrossRefPubMedPubMedCentralGoogle Scholar
  278. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism- plant signaling. FEMS Microbiol Rev 31(4):425–448CrossRefPubMedPubMedCentralGoogle Scholar
  279. Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:a001438CrossRefPubMedPubMedCentralGoogle Scholar
  280. Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24(4):487–506CrossRefGoogle Scholar
  281. Subramanian S, Ricci E, Souleimanov A, Smith DL (2016) A proteomic approach to lipo-chitooligosaccharide and thuricin 17 effects on soybean germination unstressed and salt stress. PLoS One 11(8):e0160660CrossRefPubMedPubMedCentralGoogle Scholar
  282. Sukweenadhi J, Balusamy SR, Kim YJ, Lee CH, Kim YJ, Koh SC, Yang DC (2018) A Growth Promoting Bacteria, Paenibacillus yonginensis DCY84T Enhanced Salt Stress Tolerance by Activating Defense-Related Systems in Panax ginseng. Front Plant Sci 9:813CrossRefPubMedPubMedCentralGoogle Scholar
  283. Swain DL, Singh D, Horton DE, Mankin JS, Ballard TC, Diffenbaugh NS (2017) Remote linkages to anomalous winter atmospheric ridging over the northeastern Pacific. J Geophy Res Atmos 22:122Google Scholar
  284. Syvertsen JP, Boman B, Tucker DPH (1989) Salinity in Florida citrus production. Proceed Florida State Horticul Soc 102:61–64Google Scholar
  285. Szabolcs I (1992) Salinization of soil and water and its relation to desertification. Desertification Control Bull 21:32–37Google Scholar
  286. Szabolcs I (1994) Soils and salinisation. In: Handbook of Plant Crop Stress 3–11Google Scholar
  287. Tanji KK (1990) Nature and extent of agricultural salinity. In: Agricultural salinity assessment and management 71–92Google Scholar
  288. Tanwir F, Saboor A, Nawaz N (2003) Soil salinity and the livelihood strategies of small farmers: a case study in Faisalabad district, Punjab. Pak Int J Agric Biol 5:440–441Google Scholar
  289. Timmusk S, Wagner EGH (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mole Plant Microbe Interact 12(11):951–959CrossRefGoogle Scholar
  290. Timmusk S, El-Daim IAA, Copolovici L, Tanilas T, Kännaste A, Behers L, Niinemets Ü (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9(5):e96086CrossRefPubMedPubMedCentralGoogle Scholar
  291. Tiwari S, Lata C, Chauhan PS, Nautiyal CS (2016) Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol Biochem 99:108–117CrossRefGoogle Scholar
  292. Todaka D, Shinozaki K, Yamaguchi-Shinozaki K (2015) Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Front Plant Sci 6:84CrossRefPubMedPubMedCentralGoogle Scholar
  293. Torres RO, Henry A (2016) Yield stability of selected rice breeding lines and donors across conditions of mild to moderately severe drought stress. Field Crop Res 220:37–45CrossRefGoogle Scholar
  294. Tosens T, Niinemets U, Vislap V, Eichelmann H, Castro Diez P (2012) Developmental changes in mesophyll diffusion conductance and photosynthetic capacity under different light and water availabilities in Populus tremula: how structure constrains function. Plant Cell Environ 35(5):839–856CrossRefGoogle Scholar
  295. Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Inoue H (2013) Control of root system architecture by deeper rooting 1 increases rice yield under drought conditions. Nat Gen 45(9):1097CrossRefGoogle Scholar
  296. Ulloa-Ogaz AL, Muñoz-Castellanos LN, Nevárez-Moorillón GV (2015) Biocontrol of phytopathogens: antibiotic production as mechanism of control. In: The battle against microbial pathogens: basic science, technological advances and educational programes. Formatex Research Center, Spain, pp 305–309Google Scholar
  297. Upadhyay SK, Singh DP (2015) Effect of salt-tolerant plant growth promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biol 17:288–293CrossRefGoogle Scholar
  298. Vaishnav A, Kumari S, Jain S, Varma A, Choudhary DK (2015) Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress. J Appl Microbiol 119:539–551CrossRefGoogle Scholar
  299. Vaishnav A, Kumari S, Jain S, Varma A, Tuteja N, Choudhary DK (2016) PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside. J Basic Microbiol 56(11):1274–1288CrossRefGoogle Scholar
  300. Valifard M, Mohsenzadeh S, Niazi A, Moghadam A (2015) Phenylalanine ammonia lyase isolation and functional analysis of phenylpropanoid pathway under salinity stress in ‘Salvia’ species. Aus J Crop Sci 9(7):656Google Scholar
  301. Van den Ende W, Valluru R (2009) Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? J Exp Bot 60(1):9–18CrossRefGoogle Scholar
  302. Vardharajula S, Ali SKZ, Grover M, Reddy G, Bandi V (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soil 46:17–26CrossRefGoogle Scholar
  303. Vardharajula S, Zulfikar Ali S, Grover M, Reddy G, Bandi V (2011) Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 6(1):1–14Google Scholar
  304. Vendruscolo ECG, Schuster I, Pileggi M, Scapim CA, Molinari HBC, Marur CJ, Vieira LGE (2007) Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol 164(10):1367–1376CrossRefGoogle Scholar
  305. Wang H, Yamauchi A (2006) Growth and function of rootsunder abiotic stress soils. In: Huang B (ed) Plant–environment interactions, 3rd edn. CRC, Taylor and Francis Group, LLC, New York, pp 271–320CrossRefGoogle Scholar
  306. Wang CJ, Yang W, Wang C, Gu C, Niu DD, Liu HX, Guo JH (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS One 7(12):e52565CrossRefPubMedPubMedCentralGoogle Scholar
  307. Wang C, Yang A, Yin H, Zhang J (2008) Influence of water stress on endogenous hormone contents and cell damage of maize seedlings. J Integ Plant Biol 50(4):427–434CrossRefGoogle Scholar
  308. Wang Q, Dodd IC, Belimov AA, Jiang F (2016) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na + accumulation. Funct Plant Biol 43(2):161–172CrossRefGoogle Scholar
  309. Wang X, Mavrodi DV, Ke L, Mavrodi OV, Yang M, Thomashow LS, Zhang J (2015) Biocontrol and plant growth-promoting activity of rhizobacteria from C hinese fields with contaminated soils. Microb Biotechnol 8(3):404–418CrossRefGoogle Scholar
  310. Weigand C (2011) Wheat import projections towards 2050. US Wheat Associates, USAGoogle Scholar
  311. Wilkinson S, Davies WJ (2010) Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ 33(4):510–525CrossRefGoogle Scholar
  312. Wilkinson S, Kudoyarova GR, Veselov DS, Arkhipova TN, Davies WJ (2012) Plant hormone interactions: innovative targets for crop breeding and management. J Exp Bot 63(9):3499–3509CrossRefGoogle Scholar
  313. Wrathall DJ, Van Den Hoek J, Walters A, Devenish A (2018) Water stress and human migration: a global, georeferenced review of empirical research. Land Water Discus Paper 11Google Scholar
  314. Wu Z, Yue H, Lu J, Li C (2012) Characterization of rhizobacterial strain Rs-2 with ACC deaminase activity and its performance in promoting cotton growth under salinity stress. World J Microbiol Biotechnol 28(6):2383–2393CrossRefGoogle Scholar
  315. Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25(2):131–139CrossRefGoogle Scholar
  316. Xuemei J, Dong B, Shiran B, Talbot MJ, Edlington JE, Trijntje H, Dolferus R (2011) Control of ABA catabolism and ABA homeostasis is important for reproductive stage stress tolerance in cereals. Plant Physiol 111Google Scholar
  317. Yadav SK, Jyothi Lakshmi N, Maheswari M, Vanaja M, Venkateswarlu B (2005) Influence of water deficit at vegetative, anthesis and grain filling stages on water relation and grain yield in Sorghum. Indian J Plant Physiol 10:20–22Google Scholar
  318. Yadav OP (2010) Drought response of pearl millet landrace-based populations and their crosses with elite composites. Field Crop Res 118(1):51–56CrossRefGoogle Scholar
  319. Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6(2):251–264PubMedPubMedCentralGoogle Scholar
  320. Yan J, Smith MD, Glick BR, Liang Y (2014) Effects of ACC deaminase containing rhizobacteria on plant growth and expression of Toc GTPases in tomato (Solanum lycopersicum) under salt stress. Botany 92(11):775–781CrossRefGoogle Scholar
  321. Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trend Plant Sci 14(1):1–4CrossRefGoogle Scholar
  322. Yao L, Wu Z, Zheng Y, Kaleem I, Li C (2010) Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Biol 46(1):49–54CrossRefGoogle Scholar
  323. Yasmin H, Bano A, Samiullah A (2013) Screening of PGPR isolates from semi-arid region and their implication to alleviate drought stress. Pak J Bot 45:51–58Google Scholar
  324. Yasmin H, Nosheen A, Naz R, Bano A, Keyani R (2017) l-tryptophan-assisted PGPR-mediated induction of drought tolerance in maize (Zea mays L.). J Plant Interact 12(1):567–578Google Scholar
  325. Yeo A (1998) Molecular biology of salt tolerance in the context of whole-plant physiology. J Exp Bot 49(323):915–929Google Scholar
  326. Yoon GM, Kieber JJ (2013) 1-Aminocyclopropane-1-carboxylic acid as a signalling molecule in plants. Aob Plant 5:17CrossRefGoogle Scholar
  327. Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 38:1095–1102CrossRefGoogle Scholar
  328. Zafar-ul-Hye M, Ahmad M, Shahzad SM (2013) Synergistic effect of rhizobia and plant growth promoting rhizobacteria on the growth and nodulation of lentil seedlings under axenic conditions. Soil Environ 32:79–86Google Scholar
  329. Zahir ZA, Munir A, Asghar HN, Shaharoona B, Arshad M (2008) Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18(5):958–963PubMedPubMedCentralGoogle Scholar
  330. Zhang H, Kim MS, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag MA, Ryu CM, Allen R, Melo SI, Paré PW (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839–851CrossRefGoogle Scholar
  331. Zhang H, Murzello C, Sun Y, Kim MS, Xie X, Jeter RM, Zak JC, Dowd SE, Pare PW (2010) Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Mol Plant Microbe Interact 23:1097–1104CrossRefPubMedPubMedCentralGoogle Scholar
  332. Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proceed Nat Acad Sci 98(22):12832–12836CrossRefGoogle Scholar
  333. Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Paré PW (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant Microbe Interact 21(6):737–744CrossRefGoogle Scholar
  334. Zhang JY, Broeckling CD, Blancaflor EB, Sledge MK, Sumner LW, Wang ZY (2005) Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J 42(5):689–707CrossRefPubMedPubMedCentralGoogle Scholar
  335. Zhang J, Zhang S, Cheng M, Jiang H, Zhang X, Peng C, Jin J (2018) Effect of drought on agronomic traits of rice and wheat: a meta-analysis. Inter J Environ Res Public Health 5:15Google Scholar
  336. Zhang N, Sun Q, Zhang H, Cao Y, Weeda S, Ren S, Guo YD (2014) Roles of melatonin in abiotic stress resistance in plants. J Exp Bot 66(3):647–656CrossRefPubMedPubMedCentralGoogle Scholar
  337. Zhang SW, Li CH, Cao J, Zhang YC, Zhang SQ, Xia YF, Sun Y (2009) Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/OsGH3. 13 activation. Plant Physiol 151(4):1889–1901Google Scholar
  338. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273CrossRefPubMedPubMedCentralGoogle Scholar
  339. Zhu JK (2001) Plant salt tolerance. Trend. Plant Sci 6(2):66–71CrossRefGoogle Scholar
  340. Zia MA, Yasmin H, Shair F, Jabeen Z, Mumtaz S, Hayat Z, Hassan MN (2018) glucanolytic rhizobacteria produce antifungal metabolites and elicit ROS scavenging system in sugarcane. Sugar Tech 1–12

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Humaira Yasmin
    • 1
    Email author
  • Asia Nosheen
    • 1
  • Rabia Naz
    • 1
  • Rumana Keyani
    • 1
  • Seemab Anjum
    • 1
  1. 1.COMSATS University IslamabadChak Shahazad, IslamabadPakistan

Personalised recommendations