Advertisement

FaceWallGraph: Using Machine Learning for Profiling User Behaviour from Facebook Wall

  • Aimilia Panagiotou
  • Bogdan Ghita
  • Stavros ShiaelesEmail author
  • Keltoum Bendiab
Conference paper
  • 356 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11660)

Abstract

Facebook represents the current de-facto choice for social media, changing the nature of social relationships. The increasing amount of personal information that runs through this platform publicly exposes user behaviour and social trends, allowing aggregation of data through conventional intelligence collection techniques such as OSINT (Open Source Intelligence). In this paper, we propose a new method to detect and diagnose variations in overall Facebook user psychology through Open Source Intelligence (OSINT) and machine learning techniques. We are aggregating the spectrum of user sentiments and views by using N-Games charts, which exhibit noticeable variations over time, validated through long term collection. We postulate that the proposed approach can be used by security organisations to understand and evaluate the user psychology, then use the information to predict insider threats or prevent insider attacks.

Keywords

Facebook Social media Information collection OSINT Machine learning Web crawler 

References

  1. 1.
    Omand, D., Bartlett, J., Miller, C.: Introducing social media intelligence (SOCMINT). Intell. Nat. Secur. 27(6), 801–823 (2012)CrossRefGoogle Scholar
  2. 2.
    Kanakaris, V., Tzovelekis, K., Bandekas, D.V.: Impact of AnonStalk (Anonymous Stalking) on users of Social Media: a case study. J. Eng. Sci. Technol. Rev. 11(2) (2018)Google Scholar
  3. 3.
  4. 4.
    Pellet, H., Shiaeles, S., Stavrou, S.: Localising social network users and profiling their movement. Comput. Secur. 81, 49–57 (2019)CrossRefGoogle Scholar
  5. 5.
    Kramer, A.D., Guillory, J.E., Hancock, J.T.: Experimental evidence of massive-scale emotional contagion through social networks. Proc. Natl. Acad. Sci. 111(24), 8788–8790 (2014)CrossRefGoogle Scholar
  6. 6.
    Gritzalis, D., Kandias, M., Stavrou, V., Mitrou, L.: History of information: the case of privacy and security in social media. In: Proceedings of the History of Information Conference, pp. 283–310 (2014)Google Scholar
  7. 7.
    Muise, A., Christofides, E., Desmarais, S.: More information than you ever wanted: does Facebook bring out the green-eyed monster of jealousy? CyberPsychology Behav. 12(4), 441–444 (2009)CrossRefGoogle Scholar
  8. 8.
    Palumbo, C., Volpe, U., Matanov, A., Priebe, S., Giacco, D.: Social networks of patients with psychosis: a systematic review. BMC Res. Notes 8(1), 560 (2015)CrossRefGoogle Scholar
  9. 9.
    De Choudhury, M., Gamon, M., Counts, S., Horvitz, E.: Predicting depression via social media. In: Seventh International AAAI Conference on Weblogs and Social Media (2013)Google Scholar
  10. 10.
    Hribar, G., Podbregar, I., Ivanuša, T.: OSINT: a “grey zone”? Int. J. Intell. CounterIntelligence 27(3), 529–549 (2014)CrossRefGoogle Scholar
  11. 11.
    Williams, H.J., Blum, I.: Defining second generation open source intelligence (OSINT) for the defense enterprise. RAND Corporation Santa Monica United States (2018)Google Scholar
  12. 12.
    Sadilek, A., Kautz, H., Silenzio, V.: Modeling spread of disease from social interactions. In: Sixth International AAAI Conference on Weblogs and Social Media (2012)Google Scholar
  13. 13.
    Paul, M.J., Dredze, M.: You are what you tweet: analyzing twitter for public health. In: Fifth International AAAI Conference on Weblogs and Social Media (2011)Google Scholar
  14. 14.
    Golden, J., et al.: Loneliness, social support networks, mood and wellbeing in community-dwelling elderly. Int. J. Geriatr. Psychiatry J. Psychiatry Life Allied Sci. 24(7), 694–700 (2009)CrossRefGoogle Scholar
  15. 15.
    Copeland, J.R.M., Dewey, M.E., Wood, N., Searle, R., Davidson, I.A., McWilliam, C.: Range of mental illness among the elderly in the community: prevalence in Liverpool using the GMS-AGECAT package. Br. J. Psychiatry 150(6), 815–823 (1987)CrossRefGoogle Scholar
  16. 16.
    Wenger, G.C.: Support networks in old age: constructing a typology. In: Growing Old in the Twentieth Century, pp. 166–185 (1989)Google Scholar
  17. 17.
    Christakis, N., Fowler, J.: Social contagion theory: examining dynamic social networks and human behavior. Stat. Med. 32(4), 556–577 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Bollen, J., Gonçalves, B., Ruan, G., Mao, H.: Happiness is assortative in online social networks. Artif. Life 17(3), 237–251 (2011)CrossRefGoogle Scholar
  19. 19.
    Bazarova, N.N., Choi, Y.H., Schwanda Sosik, V., Cosley, D., Whitlock, J.: Social sharing of emotions on Facebook: channel differences, satisfaction, and replies. In: Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing, pp. 154–164. ACM (2015)Google Scholar
  20. 20.
  21. 21.
    Facebook for developers. https://developers.facebook.com/products/messenger/. Accessed 3 Mar 2019
  22. 22.
    Selenium with python. https://selenium-python.readthedocs.io/, Accessed 3 Apr 2019
  23. 23.
    Tutorial—Python NGram 3.3 documentation. https://pythonhosted.org/ngram/tutorial.html. Accessed 29 May 2019

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Aimilia Panagiotou
    • 1
  • Bogdan Ghita
    • 2
  • Stavros Shiaeles
    • 2
    Email author
  • Keltoum Bendiab
    • 2
  1. 1.Faculty of Pure and Applied SciencesOpen University of CyprusNicosiaCyprus
  2. 2.Centre for Security, Communications and Network ResearchUniversity of PlymouthPlymouthUK

Personalised recommendations