Advertisement

Intelligent Functional Electrical Stimulation

  • Marian-Silviu PoboroniucEmail author
  • Dănuţ-Constantin Irimia
Chapter
Part of the Intelligent Systems Reference Library book series (ISRL, volume 170)

Abstract

Functional Electrical Stimulation (FES) holds the premises to artificially control the musculoskeletal system aiming to improve quality of life in e.g. multiple sclerosis patients, or to provide targeted rehabilitation in e.g. stroke patients. Besides some neuromuscular stimulators which are widely used within FES clinics (e.g. Odstock Drop Foot Stimulator to correct foot drop in poststroke rehabilitation), some other FES-based control strategies e.g. to restore gait in paraplegia, are still under intensive research. The proposed chapter will shortly review the FES-based applications in neurorehabilitation and then will focus on current research that aims to artificially control the human body muscles by means of FES in order to, e.g. restore gait in paraplegia, improve neurorehabilitation in stroke patients, as well as the new trends to combine FES with hand and arm orthoses and Brain-Computer Interface (BCI).

Keywords

Functional electrical stimulation Neuroprostheses control SCI and CVA rehabilitation Brain-computer interfaces Intelligent neuroprostheses 

References

  1. 1.
    2017 Spinal Cord Injury Statistics: On-line reference (2018). https://www.spinalcord.com. Accessed on 11 April 2018
  2. 2.
    Abboud, H., Hill, E., Siddiqui, J., Serra, A., Walter, B.: Neuromodulation in multiple sclerosis. Multiple Sclerosis J. 23(13), 1663–1676 (2017)CrossRefGoogle Scholar
  3. 3.
    Ang, K.K., Guan, C., Chua, K.S.G., Ang, B.T., Kuah, C., Wang, C., et al.: A clinical study of motor imagerybased brain-computer interface for upper limb robotic rehabilitation. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009, 5981–5984 (2009)Google Scholar
  4. 4.
    Balasubramanian, S., He, J.P.: Adaptive control of a wearable exoskeleton for upper-extremity neurorehabilitation. Appl. Bion. Biomech. 9(1), 99–115 (2012).  https://doi.org/10.3233/ABB-2011-0041CrossRefGoogle Scholar
  5. 5.
    Bissolotti, L., Villafane, J.H., Gaffurini, P., Orizio, C., Valdes, K., Negrini, S.: Changes in skeletal muscle perfusion and spasticity in patient with poststroke hemiparesis treated by robotic assistance (Gloreha) of the hand. Phys. Ther. Sci. 28, 769–773 (2016)CrossRefGoogle Scholar
  6. 6.
    Côté, M.: PA: Mapping of the human upper arm muscle activity with an electrode matrix. Electromyogr. Clin. Neurophysiol. 40(4), 215–223 (2000)Google Scholar
  7. 7.
    Daly, J.J., Cheng, R., Rogers, J., Litinas, K., Hrovat, K., Dohring, M.: Feasibility of a new application of noninvasive brain-computer interface (BCI): A case study of training for recovery of volitional motor control after stroke. J. Neurol. Phys. Therapy 33, 203–2011 (2009)CrossRefGoogle Scholar
  8. 8.
    del-Ama, A.J., Gil-Agudo, Á., Pons, J., Moreno, J.: Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton. J. Neuroeng. Rehabil. 11, 27 (2014)CrossRefGoogle Scholar
  9. 9.
    Dingguo, Z., Yong, R., Kai, G., Jie, J., Wendong, X.: Cooperative control for a hybrid rehabilitation system combining functional electrical stimulation and robotic exoskeleton. Front. Neurosci. 11, 725 (2017)CrossRefGoogle Scholar
  10. 10.
    Do, A.H., Wang, P.T., King, C.E., Abiri, A., Nenadic, Z.: Brain-Computer Interface controlled functional electrical stimulation system for ankle movement. J. NeuroEng. Rehabil. 8, 49 (2011)CrossRefGoogle Scholar
  11. 11.
    Dolan, M., Andrews, B., Veltink, P.H.: Switching curve controller for FES assisted standing up and sitting down. IEEE Trans. Rehabil. Eng. 6, 167–171 (1998)CrossRefGoogle Scholar
  12. 12.
    Donaldson, N.N., Yu, C.H.: FES standing control by handle reactions of leg muscle stimulation (CHRELMS). IEEE Trans. Rehabil. Eng. 4, 280–284 (1996)CrossRefGoogle Scholar
  13. 13.
    Downey, R.J., Cheng, T.H., Bellman, M.J., Dixon, W.E.: Switched tracking control of the lower limb during asynchronous neuromuscular electrical stimulation: theory and experiments. IEEE Trans. Cybern. 47(5), 1251–1262 (2017).  https://doi.org/10.1109/TCYB.2016.2543699CrossRefGoogle Scholar
  14. 14.
    Eraife, J., Clark, W., France, B., Desando, S., Moore, D.: Effectiveness of upper limb functional electrical stimulation after stroke for the improvement of activities of daily living and motor function: a systematic review and meta-analysis. Syst. Rev. 6, 40 (2017).  https://doi.org/10.1186/s13643-017-0435-5CrossRefGoogle Scholar
  15. 15.
    Ethiera, C., Miller, L.: Brain-controlled muscle stimulation for the restoration of motor function. Neurobiol. Dis. 83(180–190), 2015 (2015).  https://doi.org/10.1016/j.nbd.2014.10.014CrossRefGoogle Scholar
  16. 16.
    Fatone, S.: A review of the literature pertaining to KAFOs and HKAFOs for ambulation. J. Prosthet. Orthot. 18(3), 137–168 (2006)CrossRefGoogle Scholar
  17. 17.
    Fuhr, T., Quintern, J., Riener, R., Schmidt, G.: Assisting locomotion in patients with paraplegia. Control of WALK!—a cooperative patient driven neuroprosthetic system. IEEE EMBS Mag. 27, 38–48 (2008)Google Scholar
  18. 18.
    Grigoras, V.-A., Irimia, D.C., Poboroniuc, M.S., Popescu, C.D.: Testing of a hybrid FES-robot assisted hand motor training program in sub-acute stroke survivors. Adv. Electr. Comput. Eng. 16(4), 89–94 (2016). ISSN: 1582-7445, e-ISSN: 1844-7600,  https://doi.org/10.4316/aece.2016.04014CrossRefGoogle Scholar
  19. 19.
    Grosse-Wentrup, M., Mattia, D., Oweiss, K.: Using brain–computer interfaces to induce neural plasticity and restore function. J. Neural Eng. 8(2), 025004 (2011)CrossRefGoogle Scholar
  20. 20.
    Hartopanu, S., Poboroniuc, M.S., Serea, F., Irimia, D.C., Livint, G.: New issues on FES and robotic glove device to improve the hand rehabilitation in stroke patients. In: Proceedings of 6th International Conference on Modern Power System 2015. Acta Electrotehnica 56(3), 123–127 (2015). ISSN: 1841-3323, ISSN: 2344-5637Google Scholar
  21. 21.
    Hatem, S., Saussez, G., della Faille, M., Prist, V., Zhang, X.: Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Front. Human Neurosci. 10, 442 (2016)CrossRefGoogle Scholar
  22. 22.
    Irimia, D., Sabathiel, N., Ortner, R., Poboroniuc, M., Coon, W., Allison, B.Z., Guger, C.: recoveriX: a new BCI-based technology for persons with stroke. In: 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 08/2016, p. 1 (2016)Google Scholar
  23. 23.
    Irimia, D.C., Cho, W., Ortner, R., Allison, B.Z., Ignat, B.E., et al.: Brain-computer interfaces with multi-sensory feedback for stroke rehabilitation: a case study. Artif. Organs 41, E178–E184 (2017).  https://doi.org/10.1111/aor.13054CrossRefGoogle Scholar
  24. 24.
    Irimia, D.C., Poboroniuc, M.S., Ortner, R., Allison, B.Z., Guger, C.: Preliminary results of testing a BCIcontrolled FES system for post-stroke rehabilitation. In: Proceedings of the 7th Graz Brain-Computer Interface Conference, Graz, Austria, 18–22 Sept 2017Google Scholar
  25. 25.
    Irimia, D,, Poboroniuc, M., Serea, F., Baciu, A., Olaru, R.: Controlling a FES-EXOSKELETON rehabilitation system by means of brain-computer interface. In: International Conference and Exposition on Electrical and Power Engineering, pp. 352–355 (2016).  https://doi.org/10.1109/icepe.2016.7781361
  26. 26.
    Jang, S.H., You, S.H., Hallett, M., Cho, Y.W., Park, C.M., et al.: Cortical reorganization and associated functional motor recovery after virtual reality in patients with chronic stroke: an experimenter-blind preliminary study. Arch. Phys. Med. Rehabil. 86, 2218–2223 (2005).  https://doi.org/10.1016/j.apmr.2005.04.015CrossRefGoogle Scholar
  27. 27.
    Jarosz, R., Littlepage, M., Creasey, G., McKenna, S.: Functional electrical stimulation in spinal cord injury respiratory care. Top Spinal Cord Inj. Rehabil. 18(4), 315–321 (2012).  https://doi.org/10.1310/sci1804-315CrossRefGoogle Scholar
  28. 28.
    Kern, H.: Electrical stimulation on paraplegic patients. Eur. J. Trans. Myol. Basic Appl. Myol. 24(2), 75157 (2014)Google Scholar
  29. 29.
    Kilgore, K.L., Peckham, H., Keith, M.W., et al.: An implanted upper-extremity neuroprosthesis. J. Bone Joint Surg. 79, 533–541 (1997)CrossRefGoogle Scholar
  30. 30.
    Ko, E.J., Sun, I.Y., Yun, G.J., Kang, J., Kim, J.Y., Kim, G.E.: Effects of lateral electrical surface stimulation on scoliosis in children with severe cerebral palsy: a pilot study. Disability Rehabil. 40(2), 192–198 (2018)CrossRefGoogle Scholar
  31. 31.
    Krebs, H.I., Volpe, B.T.: Rehabilitation robotics. Handb. Clin. Neurol. 110, 283–294 (2013).  https://doi.org/10.1016/b978-0444-52901-5.00023-xCrossRefGoogle Scholar
  32. 32.
    Kutlu, M., Freeman, C.T., Hallewell, E., Hughes, A.-M., Laila, D.S.: Upper-limb stroke rehabilitation using electrode-array based functional electrical stimulation with sensing and control innovations. Med. Eng. Phys. 38, 366–379 (2016)CrossRefGoogle Scholar
  33. 33.
    Kyung-Hoon, Y., Kwon-Young, K.: Functional electrical stimulation with augmented feedback training improves gait and functional performance in individuals with chronic stroke: a randomized controlled trial. J. Kor. Phys. Ther. 29(2), 74–79 (2017).  https://doi.org/10.18857/jkpt.2017.29.2.74CrossRefGoogle Scholar
  34. 34.
    Li, Z., Guiraud, D., Andreu, D., Benoussaad, M., Fattal, C., Hayashibe, M.: Real-time estimation of FES-induced joint torque with evoked EMG. Application to spinal cord injured patients. J. Neuroeng Rehabil. 13, 60 (2016)CrossRefGoogle Scholar
  35. 35.
    Liberson, W.T., Holmquest, H.J., Scott, D., et al.: Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch. Phys. Med. Rehabil. 42, 101 (1961)Google Scholar
  36. 36.
    Liu, Y., Wang, H., Zhao, W., Zhang, M., Hongbo, Q., et al.: Flexible, stretchable sensors for wearable health monitoring: sensing mechanisms, materials, fabrication strategies and features. Sensors 18(2), 645 (2018)CrossRefGoogle Scholar
  37. 37.
    Lupu, R.G., Irimia, D.C., Ungureanu, F., Poboroniuc, M.S., Moldoveanu, A.: BCI and FES based therapy for stroke rehabilitation using VR facilities. Hindawi Wireless Commun. Mobile Comput. 2018, 8 (2018). Article ID 4798359.  https://doi.org/10.1155/2018/4798359CrossRefGoogle Scholar
  38. 38.
    Mattia, D., Pichiorri, F., Molinari, M., Rupp, R.: Part II: devices, applications and users brain computer interface for hand motor function restoration and rehabilitation. In: Allison, Z.B., Dunne, S., Leeb, R., Del, J., Millan, R., Nijholt, A. (Eds.) Towards Practical Brain-Computer Interfaces: Bridging the Gap from Research to Real-World Applications, pp. 131–53. Springer, Berlin (2013)Google Scholar
  39. 39.
    Mazzoleni, S., Duret, C., Gaëlle, A., Grosmaire, E.B.: Combining upper limb robotic rehabilitation with other therapeutic approaches after stroke: current status, rationale and challenges. Biomed. Res. Int. 2017, 8905637 (2017).  https://doi.org/10.1155/2017/8905637CrossRefGoogle Scholar
  40. 40.
    Miller, L., McFadyen, A., Lord, A., Hunter, R., Paul, L., Rafferty, D., Bowers, R., Mattison, P.: Functional electrical stimulation for foot drop in multiple sclerosis: a systematic review and meta-analysis of the effect on gait speed. Arch. Phys. Med. Rehabil. 98(7), 1435–1452 (2017)CrossRefGoogle Scholar
  41. 41.
    Mulder, A.J., Veltink, P.H., Boom, H.B.K.: On/off control in FES-induced standing up: a model study and experiments. Med. Biol. Eng. Comput. 30, 205–212 (1992)CrossRefGoogle Scholar
  42. 42.
    Multiple Sclerosis by the Numbers: Facts, statistics, and you, on-line reference (2018). https://www.healthline.com/health/multiple-sclerosis/facts-statistics-infographic#1. Accessed on 11 April 2018
  43. 43.
    NHS (UK), Interventional procedure guidance 278: Functional electrical stimulation for drop foot of central neurological origin. National Institute for Health and Clinical Excellence (NHS) (2009). ISBN 1-84629-846-6Google Scholar
  44. 44.
    O’Dwyer, S.B., O’Keeffe, D.T., Coote, S., Lyons, G.M.: An electrode configuration technique using an electrode matrix arrangement for FES-based upper arm rehabilitation systems. Med. Eng. Phys. 28, 166–176 (2006)CrossRefGoogle Scholar
  45. 45.
    Ortner, R., Irimia, D.C., Scharinger, J., Guger, C.: A motor imagery based brain-computer interface for stroke rehabilitation. Stud. Health Technol. Inform. 181, 319–323 (2012)Google Scholar
  46. 46.
    Poboroniuc, M.: Current status and future prospects for FES-based control of standing and walking in paraplegia. In: 3rd International Conference on Electrical and Power Engineering EPE2004, Bulletin of the Polytechnic Institute of Iasi, tom L (LIV), Fasc.5A, Iasi, Romania, pp. 21–32, 7–8 Oct 2004. ISSN 1223-8139Google Scholar
  47. 47.
    Poboroniuc, M., Wood, D.E., Riener, R., Donaldson, N.N.: A new controller for FES-assisted sitting down in paraplegia. Adv. Electr. Comput. Eng. 10(4), 9–16 (2010).  https://doi.org/10.4316/aece.2010.04002CrossRefGoogle Scholar
  48. 48.
    Poboroniuc, M.S., Irimia, D.C., Poboroniuc, I.C., Curteza, A., Macovei, L., et al.: Manufacturing and clinically testing embedded electrodes in knitted textiles for neurorehabilitation. In: Proceedings of 2017 International Conference on Electromechanical and Power Systems (SIELMEN), pp. 68–73 (2017).  https://doi.org/10.1109/sielmen.2017.8123294
  49. 49.
    Poboroniuc, M.S., Irimia, D.C.: FES&BCI based rehabilitation engineered equipment: clinical tests and perspectives. In: E-Health and Bioengineering Conference (EHB), pp 1–6 (2017).  https://doi.org/10.1109/ehb.2017.7995365
  50. 50.
    Poegge, L.S., Tosi, D., Duraibabu, D.B., Leen, G., McGrath, D., Lewis, E.: Optical fibre pressure sensors in medical applications. Sensors 15(7), 17115–17148 (2015)CrossRefGoogle Scholar
  51. 51.
    Popović, D.: Advances in functional electrical stimulation (FES). J. Electromyogr. Kinesiol. 24(6), 795–802 (2014).  https://doi.org/10.1016/j.jelekin.2014.09.008MathSciNetCrossRefGoogle Scholar
  52. 52.
    Prasad, G., Herman, P., Coyle, D., McDonough, S., Crosbie, J.: Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study. J. Neuroeng. Rehabil. 7, 60 (2010)CrossRefGoogle Scholar
  53. 53.
    Prosser, L., Curatalo, L.A., Alter, K.E., Damiano, D.L.: Acceptability and potential effectiveness of a foot drop stimulator in children and adolescents with cerebral palsy. Dev. Med. Child Neurol. 54(11), 1044–1049 (2013)CrossRefGoogle Scholar
  54. 54.
    Riener, R., Fuhr, T.: Patient-driven control of FES-supported standing up: a simulation study. IEEE Trans. Rehabil. Eng. 6, 113–124 (1998)CrossRefGoogle Scholar
  55. 55.
    Riener, R., Ferrarin, M., Pavan, E., Frigo, C.: Patient-driven control of FES-supported standing up and sitting down: experimental results. IEEE Trans. Rehabil. Eng. 8, 523–529 (2000)CrossRefGoogle Scholar
  56. 56.
    Riener, R., Nef, T., Colombo, G.: Robot-aided neurorehabilitation of the upper extremities. Med. Biol. Eng. Comput. 43, 2–10 (2005).  https://doi.org/10.1007/BF02345116CrossRefGoogle Scholar
  57. 57.
    Sabatini, A.M.: Estimating three-dimensional orientation of human body parts by inertial/magnetic sensing. Sensors 11(2), 1489–1525 (2011)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Sadowsky, C., Edward, R., Strohl, H., Commean, A., Eby, P., et al.: Lower extremity functional electrical stimulation cycling promotes physical and functional recovery in chronic spinal cord injury. J. Spinal Cord Med. 36(6), 623–631 (2013).  https://doi.org/10.1179/2045772313y.0000000101CrossRefGoogle Scholar
  59. 59.
    Serea, F., Poboroniuc, M.S., Hartopanu, S., Irimia, D.: Towards clinical implementation of an FES&Exoskeleton to rehabilitate the upper limb in disabled patients. In: Proceedings of International Conference on Control Systems and Computer Science (CSCS), pp. 827–832 (2015).  https://doi.org/10.1109/cscs.2015.114
  60. 60.
    Shindo, K., Kawashima, K., Ushiba, J., Ota, N., Ito, M., Ota, T., et al.: Effects of neurofeedback training with an electroencephalogram-based brain-computer interface for hand paralysis in patients with chronic stroke: a preliminary case series study. J. Rehabil. Med. 43(10), 951–957 (2011)CrossRefGoogle Scholar
  61. 61.
    Silvoni, S., Ramos-Murguialday, A., Cavinato, M., et al.: Braincomputer interface in stroke: a review of progress. Clin. EEG Neurosci. 42, 245–252 (2011)CrossRefGoogle Scholar
  62. 62.
    Singh, A., Tetreault, L., Kalsi-Ryan, S., Nouri, A., Fehlings, M.: Global prevalence and incidence of traumatic spinal cord injury. Clin. Epidemiol. 6, 309–331 (2014)Google Scholar
  63. 63.
    Sinkjær, T., Haugland, M., Inmann, A., Hansen, M., Nielsen, D.K.: Biopotentials as command and feedback signals in functional electrical stimulation systems. Med. Eng. Phys. 25(1), 29–40 (2003)CrossRefGoogle Scholar
  64. 64.
    Smith, B.T., Mulcahey, M.J., Betz, R.R.: An implantable upper extremity neuroprosthesis in a growing child with a C5 spinal cord injury. Spinal Cord 39(2), 118–123 (2001)CrossRefGoogle Scholar
  65. 65.
    Snoek, G.J., Ijzerman, M.J., Groen, F., et al.: Use of the NESS Handmaster to restore handfunction in tetraplegia: clinical experiences in ten patients. Spinal Cord 38, 244–249 (2000).  https://doi.org/10.1038/sj.sc.3100980CrossRefGoogle Scholar
  66. 66.
    Son, B.C., Kim, D.-R., Kim, Y., Hong, J.T.: Phrenic Nerve Stimulation for Diaphragm Pacing in a Quadriplegic Patient. J Korean Neurosurg Soc. 54(4), 359–362 (2013)CrossRefGoogle Scholar
  67. 67.
    Stein, J., Narendran, K., McBean, J., et al.: Electromyography-controlled exoskeletal upper-limb-powered orthosis for exercise training after stroke. Am. J. Phys. Med. Rehabil. 86, 255–261 (2007)CrossRefGoogle Scholar
  68. 68.
    Stein, R.B., Everaert, D.G., Thompson, A.K., Chong, S.L., Whittaker, M., et al.: Long-term therapeutic and orthotic effects of a foot drop stimulator on walking performance in progressive and nonprogressive neurological disorders. Neurorehabil. Neural Repair 24(2), 152–167 (2010).  https://doi.org/10.1177/1545968309347681CrossRefGoogle Scholar
  69. 69.
    Stroke Statistics: On-line reference (2018). http://www.strokecenter.org/patients/about-stroke/stroke-statistics/. Accessed on 11 April 2018
  70. 70.
    Sukhvinder, K.-R., Verrier, M.: A synthesis of best evidence for the restoration of upper-extremity function in people with tetraplegia. Physiother. Can. 63(4), 474–489 (2011)CrossRefGoogle Scholar
  71. 71.
    Taylor, P.N., Wilkinson Hart, I.A., Khan, M.S., et al.: Correction of footdrop due to multiple sclerosis using the STIMuSTEP implanted dropped foot stimulator. Int. J. MS Care 18, 239–247 (2016)CrossRefGoogle Scholar
  72. 72.
    Taylor, P., Barrett, C., Mann, G., et al.: A feasibility study to investigate the effect of functional electrical stimulation and physiotherapy exercise on the quality of gait of people with multiple sclerosis. Neuromodulation 17(1), 75–84 (2014)CrossRefGoogle Scholar
  73. 73.
    Taylor, P., Esnouf, J., Hobby, J.: Pattern of use and user satisfaction of neuro control freehand system. Spinal Cord 39, 156–160 (2001).  https://doi.org/10.1038/sj.sc.3101126CrossRefGoogle Scholar
  74. 74.
    Taylor, P.N., Burridge, J.H., Dunkerley, A.L., Wood, D.E., Norton, J.A., et al.: Clinical use of the Odstock dropped foot stimulator: its effect on the speed and effort of walking. Arch. Phys. Med. Rehabil. 80(12), 157783 (1999)CrossRefGoogle Scholar
  75. 75.
    Tu, X.K., Zhou, X., Li, J.X., Su, C., Sun, X.T., et al.: Iterative learning control applied to a hybrid rehabilitation exoskeleton system powered by PAM and FES. Cluster Comput. J. Networks Softw. Tools Appl, 20(4), 2855–2868 (2017)Google Scholar
  76. 76.
    Turk, R., Burridge, J., Davis, R., Cosendai, G., Sparrow, O.: Therapeutic effectiveness of electric stimulation of the upper-limb poststroke using implanted microstimulators. Arch. Phys. Med. Rehabil. 89, 1913–1922 (2008).  https://doi.org/10.1016/j.apmr.2008.01.030CrossRefGoogle Scholar
  77. 77.
    Van den Brand, R., Heutschi, J., Barraud, Q., DiGiovanna, J., Bartholdi, K., et al.: Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science 336(6085), 1182–1185 (2012)CrossRefGoogle Scholar
  78. 78.
    Wood, D.E., Harper, V.J., Barr, F.M.D., Taylor, P.N., Phillips, G.F., et al.: Experience in using knee angles as part of a closed-loop algorithm to control FES-assisted paraplegic standing. In: Proceedings of 6th International Workshop on FES: Basics, Technology and Application, Vienna, Austria, pp. 137–140 (1998)Google Scholar
  79. 79.
    Xu, R., Jiang, N., Mrachacz-Kersting, N., et al.: A closed-loop brain-computer interface triggering an active anklefoot orthosis for inducing cortical neural plasticity. IEEE Trans. Biomed. Eng. 61, 2092–2101 (2014)CrossRefGoogle Scholar
  80. 80.
    Young, B.M., Nigogosyan, Z., Nair, V.A., Walton, L.M., Song, J., Tyler, M.E., Edwards, D.F., Caldera, K., Sattin, J.A., Williams, J.C., Prabhakaran, V.: Case report: post-stroke interventional BCI rehabilitation in an individual with preexisting sensorineural disability. Front. Neuroeng. 7, 18 (2014).  https://doi.org/10.3389/fneng.2014.00018CrossRefGoogle Scholar

Additional Reading Section (Resource List)

  1. 81.
    Chang, S.N., Nijholt, A., Lotte, F. (eds.): Brain-Computer Interfaces Handbook: Technological and Theoretical Advances. Boca Raton, CRC Press (2018). ISBN 978-1-498-77343-0Google Scholar
  2. 82.
    Chapin, J.K., Moxon, K.A. (eds.): Neural Prostheses for Restoration of Sensory and Motor Function. CRC Press, Boca Raton (2001). ISBN 0-8493-2225-1Google Scholar
  3. 83.
    Diez, P. (ed.): Smart Wheelchairs and Brain-Computer Interfaces. Academic Press, London (2018). ISBN 978-0-12-812892-3Google Scholar
  4. 84.
    De Horch, K.W., Dhillon, G.S. (eds.): Neuroprosthetics: Theory and Practice. Series on Bioengineering & Biomedical Engineering, vol. 2. World Scientific Publishing Co. Pte. Ltd., Singapore (2004). ISBN 981-238-022-1Google Scholar
  5. 85.
    DiLorenzo, D.J., Bronzino, J.D. (eds.): Neuroengineering. CRC Press, Boca Raton (2008). ISBN 978-0-8493-8174-4Google Scholar
  6. 86.
    Fazel, R. (ed.): Recent Advances in Brain-Computer Interface Systems. IntechOpen (2011). ISBN 978–953-307-175-6Google Scholar
  7. 87.
    Finn, W.E., LoPresti, P.G. (eds.): Handbook of Neuroprosthetic Methods. CRC Press, Boca Raton (2003). ISBN 0-8493-1100-4Google Scholar
  8. 88.
    Freeman, C.: Control System Design for Electrical Stimulation in Upper Limb Rehabilitation: Modelling, Identification and Robust Performance. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  9. 89.
    Garcia, B.M. (ed.): Motor Imagery: Emerging Practices, Role in Physical Therapy and Clinical Implications. Nova Science Publication, Inc., New York (2015). ISBN 978-1-63483-163-5Google Scholar
  10. 90.
    Graimann, B., Brendan, A., Pfurtscheller, G. (eds.): Brain-Computer Interfaces: Revolutionizing Human-Computer Interacation (The Frontiers Collection). Springer, Berlin (2010). ISBN 978-3-642-02090-2Google Scholar
  11. 91.
    Kilgore, K. (ed.): Implantable Neuroprostheses for Restoring Function. Elsevier Ltd., Amsterdam, Boston (2015). ISBN 978-1-78242-101-6Google Scholar
  12. 92.
    Kralj, A., Bajd, T.: Functional Electrical Stimulation: Standing and walking After Spinal Cord Injury. CRC Press, Boca Raton (1989). ISBN 0-8493-4529-4Google Scholar
  13. 93.
    Krames, E.S., Peckham, P.H., Rezai, A.R. (eds.): Neuromodulation: Comprehensive Textbook of Principles, Technologies, and Therapies, vol. 1, 2nd edn. Elsevier Ltd., London (2018). ISBN 978-0-12-802766-0Google Scholar
  14. 94.
    Levi, T., Bonifazi, P., Massobrio, P., Chiappalone, M. (Eds): Closed-loop systems for next generation neuroprostheses. Frontiers (2018). ISBN 978-2-88945-466-2Google Scholar
  15. 95.
    Malmivuo, J., Plonsey, R.: Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press, New York (1995)CrossRefGoogle Scholar
  16. 96.
    Niedermeyer, E., da Silva, F.L., (eds.): Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins (2005). ISBN 978-0-7817-5126-1Google Scholar
  17. 97.
    Phillips, C.A.: Functional Electrical Rehabilitation: Technological Restoration after Spinal Cord Injury. Springer, Berlin (1991). ISBN 978-1-4612-7796-5CrossRefGoogle Scholar
  18. 98.
    Popovic, D., Sinkjaer, T.: Control of Movement for the Physically Disabled. Springer, Berlin (2000). ISBN 978-1-4471-1141-2CrossRefGoogle Scholar
  19. 99.
    Sandrini, G., Homberg, V., Saltuari, L., Smania, N., Pedrocchi, A.: Advanced Technologies for the Rehabilitation of Gait and Balance Disorders. Biosystems & Biorobotics. Springer International Publishing AG, Berlin (2018). ISBN 978-3-319-72735-6CrossRefGoogle Scholar
  20. 100.
    Schalk, G., Mellinger, J. (eds.): A Practical Guide to Brain-Computer Interfacing with BCI2000. Springer, London (2010). ISBN 978-1-84996-091-5Google Scholar
  21. 101.
    Vuckovic, A., Pineda, J., Lamarca, K., Gupta, D., Guger, C. (eds.): Interaction of BCI with the Underlying Neurological Conditions in Patients: Pros and Cons. Frontiers Media SA, Lausanne (2015). ISBN 978-2-88919-489-6Google Scholar
  22. 102.
    Wolpaw, J.R., Wolpaw, E.W. (eds.): Brain-Computer Interfaces: Principles and Practice. Oxford University Press, Oxford (2012). ISBN 978-0-195-38885-5Google Scholar
  23. 103.
    Yu, W., Chattopadhyay, S., Lim, T.-C., Acharya, U.R.: Advances in Therapeutic Engineering. CRC Press, Boca Raton (2013). ISBN 978-1-4398-7174-4Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Marian-Silviu Poboroniuc
    • 1
    Email author
  • Dănuţ-Constantin Irimia
    • 1
  1. 1.“Gheorghe Asachi” Technical University of IaşiIaşiRomania

Personalised recommendations