Advertisement

Quantitative Thermal Transport Measurements in Nanostructures

  • Jean SpièceEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Based on the experimental and analytical framework developed in the previous chapter, we develop here the requirements needed for quantitative comparison and estimation of thermal properties. Using an analytical model for the thermal spreading resistance in the sample, quantities such as thermal conductivity and interface thermal resistance can be deduced from SThM measurements. We apply similar models to relatively simple samples, oxide layers on silicon substrates to demonstrate the principles underlying these models. Finally, metal covered block copolymers thin films are mapped and their thermal resistances measured to extract effective thermal conductivities.

References

  1. 1.
    Yovanovich MM, Culham JR, Teertstra P (1998) IEEE Trans Compon Packag Manuf Technol: Part A 21:168–176Google Scholar
  2. 2.
    Muzychka YS (2014) J Thermophys Heat Transf 28:313–319Google Scholar
  3. 3.
    Assy A, Gomes S (2015) Nanotechnology 26:355401CrossRefGoogle Scholar
  4. 4.
    Muzychka YS, Yovanovich MM, Culham JR (2004) J Thermophys Heat Transf 18:45–51Google Scholar
  5. 5.
    Menges F, Riel H, Stemmer A, Dimitrakopoulos C, Gotsmann B (2013) Phys Rev Lett 111:205901Google Scholar
  6. 6.
    Al Mohtar A, Tessier G, Ritasalo R, Matvejeff M, Stormonth-Darling J, Dobson P, Chapuis P, Gomes S, Roger J (2017) Thin Solid Films 642:157–162ADSCrossRefGoogle Scholar
  7. 7.
    Chien H-C, Yao D-J, Huang M-J, Chang T-Y (2008) Rev Sci Instrum 79:054902Google Scholar
  8. 8.
    Zhu J, Tang D, Wang W, Liu J, Holub KW, Yang R (2010) J Appl Phys 108:094315Google Scholar
  9. 9.
    Muzychka YS, Sridhar MR, Yovanovich MM, Antonetti VW (1999) J Thermophys Heat Transf 13:489–494Google Scholar
  10. 10.
    Glassbrenner C, Slack GA (1964) Phys Rev 134:A1058Google Scholar
  11. 11.
    Dryden J (1983) J Heat Transf 105:408–410Google Scholar
  12. 12.
    Liu J, Ju S, Ding Y, Yang R (2014) Appl Phys Lett 104:153110Google Scholar
  13. 13.
    Jakubinek MB, White MA, Mu M, Winey KI (2010) Appl Phys Lett 96:083105Google Scholar
  14. 14.
    Juangsa FB, Muroya Y, Ryu M, Morikawa J, Nozaki T (2016) J Phys D: Appl Phys 49:365303Google Scholar
  15. 15.
    Lysenkov E, Klepko V (2015) J Eng Phys Thermophys 88:1008–1014ADSCrossRefGoogle Scholar
  16. 16.
    Hu C, Kiene M, Ho PS (2001) Appl Phys Lett 79:4121–4123Google Scholar
  17. 17.
    Zheng K, Sun F, Tian X, Zhu J, Ma Y, Tang D, Wang F (2015) ACS Appl Mater Interfaces 7:23644–23649Google Scholar
  18. 18.
    Gotsmann B, Lantz MA, Knoll A, Dürig U (2010) Nanotechnology 121–160Google Scholar
  19. 19.
    Lefèvre S, Volz S, Saulnier J-B, Fuentes C, Trannoy N (2003) Rev Sci Instrum 74:2418–2423Google Scholar
  20. 20.
    Gomes S, David L, Lysenko V, Descamps A, Nychyporuk T, Raynaud M (2007) J Phys D-Appl Phys 40:6677–6683Google Scholar
  21. 21.
    Bodzenta J, Juszczyk J, Chirtoc M (2013) Rev Sci Instrum 84:093702Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PhysicsLancaster UniversityLancasterEngland, UK

Personalised recommendations