Advertisement

SThM Experimental Models and Setups for Exploring Nanoscale Heat Transport

  • Jean SpièceEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Over the last two decades scanning probe microscopy has become an indispensable tool supporting developments in the nanoscience and nanotechnology thanks to its atomic-scale spatial resolution and sensitivity to a wide variety of physical properties. In particular, scanning thermal microscopy (SThM) has enabled measurements of heat transport and temperatures at arbitrary selected points of the probed surface with lateral resolution down to a few nm. SThM’s outstanding performance is largely due to a range of nanofabricated probes that are both sensitive and easy to use. From biological applications to active semiconductor devices, SThM is becoming the ultimate tool for probing thermal properties at the nanoscale [1, 2, 3, 4, 5].

References

  1. 1.
    Cahill DG, Ford WK, Goodson KE, Mahan GD, Majumdar A, Maris HJ, Merlin R, Phillpot SR (2003) J Appl Phys 93:793–818Google Scholar
  2. 2.
    Gomes S, Assy A, Chapuis P-O (2015) Phys Status Solidi (a) 212:477–494Google Scholar
  3. 3.
    Kim MM, Giry A, Mastiani M, Rodrigues GO, Reis A, Mandin P (2015) Microelectron Eng 148:129–142Google Scholar
  4. 4.
    Majumdar A (1999) Annu Rev Mater Sci 29:505–585Google Scholar
  5. 5.
    Shi L, Majumdar A (2002) J Heat Transf 124:329Google Scholar
  6. 6.
    Dobson PS, Weaver JMR, Mills G (2007) IEEE Sens 708–711Google Scholar
  7. 7.
    Mills G, Zhou H, Midha A, Donaldson L, Weaver JMR (1998) Appl Phys Lett 72:2900–2902Google Scholar
  8. 8.
    Pumarol ME, Rosamond MC, Tovee P, Petty MC, Zeze DA, Falko V, Kolosov OV (2012) Nano Lett 12:2906–2911Google Scholar
  9. 9.
    Hinz M, Marti O, Gotsmann B, Lantz MA, Durig U (2008) Appl Phys Lett 92:043122Google Scholar
  10. 10.
    Zhang Y, Dobson P, Weaver J (2012) J Vac Sci Technol B 30:010601Google Scholar
  11. 11.
    Tovee PD, Kolosov OV (2013) Nanotechnology 24:8ADSCrossRefGoogle Scholar
  12. 12.
    Masters ND, Ye W, King WP (2005) Phys Fluids 17:100615Google Scholar
  13. 13.
    Mu L, Li Y, Mehra N, Ji T, Zhu J (2017) ACS Appl Mater Interfaces 9:12138–12145Google Scholar
  14. 14.
    Xu D, Zhang Y, Zhou H, Meng Y, Wang S (2016) Holzforschung 70Google Scholar
  15. 15.
    Dawson A, Rides M, Maxwell AS, Cuenat A, Samano AR (2015) Polym Test 41:198–208Google Scholar
  16. 16.
    Crossley S, Usui T, Nair B, Kar-Narayan S, Moya X, Hirose S, Ando A, Mathur ND (2016) Appl Phys Lett 108:032902Google Scholar
  17. 17.
    Wielgoszewski G, Paletko P, Tomaszewski D, Zaborowski M, Jozwiak G, Kopiec D, Gotszalk T, Grabiec P (2015) Micron 79:93–100CrossRefGoogle Scholar
  18. 18.
    Park K, Krivoy E, Nair H, Bank S, Yu E (2015) Nanotechnology 26:265701ADSCrossRefGoogle Scholar
  19. 19.
    Tovee P, Pumarol M, Zeze D, Kjoller K, Kolosov O (2012) J Appl Phys 112:114317Google Scholar
  20. 20.
    Poon S, Spiéce J, Robson A, Kolosov OV, Thompson S (2017) In: 2017 IEEE international magnetics conference (INTERMAG), pp 1–2Google Scholar
  21. 21.
    Ramiandrisoa L, Allard A, Joumani Y, Hay B, Gomes S (2017) Rev Sci Instrum 88:125115Google Scholar
  22. 22.
    Chen G (2000) Int J Therm Sci 39:471–480Google Scholar
  23. 23.
    Maxim N, Mark CR, Andrew JG, Oleg VK, Vladimir GD, Dagou AZ (2017) J Phys D: Appl Phys 50:494004Google Scholar
  24. 24.
    Timofeeva M, Bolshakov A, Tovee PD, Zeze DA, Dubrovskii VG, Kolosov OV (2016) Ultramicroscopy 162:42–51CrossRefGoogle Scholar
  25. 25.
    Cahill DG, Goodson K, Majumdar A (2002) J Heat Transf 124:223–241Google Scholar
  26. 26.
    Assy A, Gomes S (2015) Appl Phys Lett 107:043105Google Scholar
  27. 27.
    Battaglia JL, Saci A, De I, Cecchini R, Selmo S, Fanciulli M, Cecchi S, Longo M (2017) Phys Status Solidi (a) 214:1600500Google Scholar
  28. 28.
    Kazmierczak-Balata A, Juszczyk J, Trefon-Radziejewska D, Bodzenta J (2017) J Appl Phys 121:114502Google Scholar
  29. 29.
    Ge Y, Zhang Y, Booth JA, Weaver JM, Dobson PS (2016) Nanotechnology 27:325503CrossRefGoogle Scholar
  30. 30.
    Menges F, Riel H, Stemmer A, Gotsmann B (2012) Nano Lett 12:596–601Google Scholar
  31. 31.
    Anis-ur-Rehman M, Maqsood A (2003) Int J Thermophys 24:867–883Google Scholar
  32. 32.
    Glassbrenner C, Slack GA (1964) Phys Rev 134:A1058Google Scholar
  33. 33.
    Jeong C, Datta S, Lundstrom M (2012) J Appl Phys 111:093708Google Scholar
  34. 34.
    Regner KT, Sellan DP, Su Z, Amon CH, McGaughey AJ, Malen JA (2013) Nat Commun 4:1640Google Scholar
  35. 35.
    Prasher RS, Phelan PE (2006) J Appl Phys 100Google Scholar
  36. 36.
    Hoogeboom-Pot KM, Hernandez-Charpak JN, Gu X, Frazer TD, Anderson EH, Chao W, Falcone RW, Yang R, Murnane MM, Kapteyn HC et al (2015) Proc Natl Acad Sci 112:4846–4851Google Scholar
  37. 37.
    Wang X, Huang B (2014) Sci Rep 4:6399Google Scholar
  38. 38.
    Gotsmann B, Lantz MA, Knoll A, Dürig U (2010) Nanotechnology 121–160Google Scholar
  39. 39.
    Robinson BJ, Kay ND, Kolosov OV (2013) Langmuir 29:7735–7742CrossRefGoogle Scholar
  40. 40.
    Robinson BJ, Kolosov OV (2014) Nanoscale 6:10806–10816ADSCrossRefGoogle Scholar
  41. 41.
    Dinelli F, Biswas SK, Briggs GAD, Kolosov OV (2000) Phys Rev B 61:13995–14006Google Scholar
  42. 42.
    Grishin I, Huey BD, Kolosov OV (2013) ACS Appl Mater Interfaces 5:11441–11445Google Scholar
  43. 43.
    Kolosov O, Yamanaka K (1993) Jpn J Appl Phys Part 2-Lett 32:L1095–L1098Google Scholar
  44. 44.
    Burnham NA, Colton RJ, Pollock HM (1993) Nanotechnology 4:64ADSCrossRefGoogle Scholar
  45. 45.
    Capella B, Baschieri P, Frediani C, Miccoli P, Ascoli C (1997) IEEE Eng Med Biol Mag 16:58–65Google Scholar
  46. 46.
    Dinelli F, Castell MR, Ritchie DA, Mason NJ, Briggs GAD, Kolosov OV (2000) Philos Mag A Phys Condens Matter Struct Defects Mech Prop 80:2299–2323Google Scholar
  47. 47.
    Fischer-Cripps AC (2007) Introduction to contact mechanics. Mechanical engineering series. Springer, BerlinCrossRefGoogle Scholar
  48. 48.
    Derjaguin BV, Muller VM, Toporov YP (1975) J Colloid Interface Sci 53:314–326Google Scholar
  49. 49.
    Kiracofe D, Raman A (2012) Phys Rev B 86Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PhysicsLancaster UniversityLancasterEngland, UK

Personalised recommendations