Advertisement

Background Review

  • Jean SpièceEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

We saw that nanoscale heat transfer presents many challenges for both theory and experiments and therefore its study is key to deepen our understanding of physical systems as well as to solve current issues face in technological applications. A promising tool for investigating nanoscale heat transfer was developed in 1986 even before the invention of the AFM [1]. First thought as a profiler using heat flux to map a surface topography, similarly to a STM, it rapidly attracted interest for its local heating capabilities. We first review in this part the development and principles of Scanning Thermal Microscopy. Then we compare different modes of operations of the SThM set up including different environment conditions. The tip-sample system is then described with the various heat transfer mechanisms at stake. Finally, before addressing the challenge of what SThM measures, we review different methods for quantitative nanothermal measurements. However beforehand, we expose the general principle of scanning probe microscopy.

References

  1. 1.
    Williams CC, Wickramasinghe HK (1986) Appl Phys Lett 49:1587–1589Google Scholar
  2. 2.
    Binnig G, Rohrer H (1982) Helv Phys Acta 55:726–735Google Scholar
  3. 3.
    Binnig G, Quate CF, Gerber C (1986) Phys Rev Lett 56:930–933Google Scholar
  4. 4.
    Dinelli F, Biswas SK, Briggs GAD, Kolosov OV (2000) Phys Rev B 61:13995–14006Google Scholar
  5. 5.
    Dinelli F, Castell MR, Ritchie DA, Mason NJ, Briggs GAD, Kolosov OV (2000) Philos Mag A Phys Condens Matter Struct Defects Mech Prop 80:2299–2323Google Scholar
  6. 6.
    Kolosov OV, Castell MR, Marsh CD, Briggs GAD, Kamins TI, Williams RS (1998) Phys Rev Lett 81:1046–1049Google Scholar
  7. 7.
    Kolosov O, Yamanaka K (1993) Jpn J Appl Phys Part 2-Lett 32:L1095–L1098Google Scholar
  8. 8.
    Dinelli F, Biswas SK, Briggs GAD, Kolosov OV (1997) Appl Phys Lett 71:1177–1179Google Scholar
  9. 9.
    Nonnenmacher M, Wickramasinghe HK (1992) Appl Phys Lett 61:168–170Google Scholar
  10. 10.
    Pollock HM, Hammiche A (2001) J Phys D-Appl Phys 34:R23–R53Google Scholar
  11. 11.
    Gomes S, Assy A, Chapuis P-O (2015) Phys Status Solidi (a) 212:477–494Google Scholar
  12. 12.
    Majumdar A (1999) Annu Rev Mater Sci 29:505–585Google Scholar
  13. 13.
    Halbertal D, Cuppens J, Shalom MB, Embon L, Shadmi N, Anahory Y, Naren H, Sarkar J, Uri A, Ronen Y et al (2016) Nature 539:407–410Google Scholar
  14. 14.
    Sadat S, Tan A, Chua YJ, Reddy P (2010) Nano Lett 10:2613–2617Google Scholar
  15. 15.
    Mills G, Zhou H, Midha A, Donaldson L, Weaver JMR (1998) Appl Phys Lett 72:2900–2902Google Scholar
  16. 16.
    Kim K, Chung J, Hwang G, Kwon O, Lee JS (2011) ACS Nano 5:8700–8709CrossRefGoogle Scholar
  17. 17.
    Kim K, Song B, Fernandez-Hurtado V, Lee W, Jeong W, Cui L, Thompson D, Feist J, Reid MTH, Garcia-Vidal FJ, Cuevas JC, Meyhofer E, Reddy P (2015) Nature 528:387ADSCrossRefGoogle Scholar
  18. 18.
    Pylkki RJ, Moyer PJ, West PE (1994) Jpn J Appl Phys Part 1 33:3785–3790Google Scholar
  19. 19.
    Dobson PS, Weaver JMR, Mills G (2007) IEEE Sens 708–711Google Scholar
  20. 20.
    Zhang Y, Dobson P, Weaver J (2012) J Vac Sci Technol B 30:010601Google Scholar
  21. 21.
    Tovee P, Pumarol M, Zeze D, Kjoller K, Kolosov O (2012) J Appl Phys 112:114317Google Scholar
  22. 22.
    Varesi J, Majumdar A (1998) Appl Phys Lett 72:37–39Google Scholar
  23. 23.
    Igeta M, Banerjee K, Wu G, Hu C, Majumdar A (2000) IEEE Electron Device Lett 21:224–226ADSCrossRefGoogle Scholar
  24. 24.
    Dazzi A, Prazeres R, Glotin F, Ortega J (2005) Opt Lett 30:2388–2390Google Scholar
  25. 25.
    Shetty R (2012) Trac-Trends Anal Chem 35:XIV–XVGoogle Scholar
  26. 26.
    McConney ME, Kulkarni DD, Jiang H, Bunning TJ, Tsukruk VV (2012) Nano Lett 12:1218–1223Google Scholar
  27. 27.
    Lai J, Perazzo T, Shi Z, Majumdar A (1997) Sens Actuators A: Phys 58:113–119Google Scholar
  28. 28.
    Grosse KL, Bae M-H, Lian F, Pop E, King WP (2011) Nat Nanotechnol 6:287–290Google Scholar
  29. 29.
    Xie X, Grosse KL, Song J, Lu C, Dunham S, Du F, Islam AE, Li Y, Zhang Y, Pop E et al (2012) ACS Nano 6:10267–10275CrossRefGoogle Scholar
  30. 30.
    Grosse KL, Xiong F, Hong S, King WP, Pop E (2013) Appl Phys Lett 102:193503Google Scholar
  31. 31.
    Grossel P, Raphael O, Depasse F, Duvaut T, Trannoy N (2007) Int J Therm Sci 46:980–988Google Scholar
  32. 32.
    Lefevre S, Volz S (2005) Rev Sci Instrum 76Google Scholar
  33. 33.
    Chirtoc M, Filip X, Henry JF, Antoniow JS, Chirtoc I, Dietzel D, Meckenstock R, Pelzl J (2004) Superlattices Microstruct 35:305–314Google Scholar
  34. 34.
    Cahill DG (1990) Rev Sci Instrum 61:802–808Google Scholar
  35. 35.
    Soudi A, Dawson RD, Gu Y (2011) ACS Nano 5:255–262Google Scholar
  36. 36.
    Kim K, Jeong W, Lee W, Reddy P (2012) ACS Nano 6:4248–4257CrossRefGoogle Scholar
  37. 37.
    Chung J, Kim K, Hwang G, Kwon O, Jung S, Lee J, Lee JW, Kim GT (2010) Rev Sci Instrum 81:114901Google Scholar
  38. 38.
    Menges F, Riel H, Stemmer A, Gotsmann B (2016) Rev Sci Instrum 87:074902Google Scholar
  39. 39.
    Hwang G, Kwon O (2016) Nanoscale 8:5280–5290ADSCrossRefGoogle Scholar
  40. 40.
    Chung J, Kim K, Hwang G, Kwon O, Choi YK, Lee JS (2012) Int J Therm Sci 62:109–113Google Scholar
  41. 41.
    Menges F, Riel H, Stemmer A, Gotsmann B (2012) Nano Lett 12:596–601Google Scholar
  42. 42.
    Menges F, Mensch P, Schmid H, Riel H, Stemmer A, Gotsmann B (2016) Nat Commun 7:10874Google Scholar
  43. 43.
    Makris A, Haeger T, Heiderhoff R, Riedl T (2016) RSC Adv 6:94193–94199Google Scholar
  44. 44.
    Gomes S, David L, Lysenko V, Descamps A, Nychyporuk T, Raynaud M (2007) J Phys D-Appl Phys 40:6677–6683Google Scholar
  45. 45.
    Juszczyk J, Kazmierczak-Balata A, Firek P, Bodzenta J (2017) Ultramicroscopy 175:81–86CrossRefGoogle Scholar
  46. 46.
    Pumarol ME, Rosamond MC, Tovee P, Petty MC, Zeze DA, Falko V, Kolosov OV (2012) Nano Lett 12:2906–2911Google Scholar
  47. 47.
    Tortello M, Colonna S, Bernal M, Gomez J, Pavese M, Novara C, Giorgis F, Maggio M, Guerra G, Saracco G et al (2016) Carbon 109:390–401CrossRefGoogle Scholar
  48. 48.
    Juszczyk J, Krzywiecki M, Kruszka R, Bodzenta J (2013) Ultramicroscopy 135:95–98CrossRefGoogle Scholar
  49. 49.
    Park K, Krivoy E, Nair H, Bank S, Yu E (2015) Nanotechnology 26:265701ADSCrossRefGoogle Scholar
  50. 50.
    Ge Y, Zhang Y, Weaver JM, Zhou H, Dobson PS (2015) J Vac Sci Technol B Nanotechnol Microelectron: Mater Process Meas Phenom 33:06FA03Google Scholar
  51. 51.
    Nelson BA, King WP (2007) Rev Sci Instrum 78Google Scholar
  52. 52.
    Lee B, Kim K, Lee S, Kim JH, Lim DS, Kwon O, Lee JS (2012) Nano Lett 12:4472–4476Google Scholar
  53. 53.
    Pratap D, Islam R, Al-Alam P, Randrianalisoa J, Trannoy N (2017) arXiv:1710.09501
  54. 54.
    Assy A, Gomes S (2015) Nanotechnology 26:355401CrossRefGoogle Scholar
  55. 55.
    Lee J, Wright TL, Abel MR, Sunden EO, Marchenkov A, Graham S, King WP (2007) J Appl Phys 101:014906Google Scholar
  56. 56.
    Weisenhorn AL, Hansma PK, Albrecht TR, Quate CF (1989) Appl Phys Lett 54:2651–2653Google Scholar
  57. 57.
    Hansma HG, Vesenka J, Siegerist C, Kelderman G, Morrett H, Sinsheimer RL, Elings V, Bustamante C, Hansma PK (1992) Science 256:1180–1184ADSCrossRefGoogle Scholar
  58. 58.
    Aigouy L, Lalouat L, Mortier M, Low P, Bergaud C (2011) Rev Sci Instrum 82Google Scholar
  59. 59.
    Tovee PD, Kolosov OV (2013) Nanotechnology 24:8ADSCrossRefGoogle Scholar
  60. 60.
    Gotsmann B, Lantz MA, Knoll A, Dürig U (2010) Nanotechnology 121–160Google Scholar
  61. 61.
    Gotsmann B, Lantz MA (2013) Nat Mater 12:59–65Google Scholar
  62. 62.
    Pettes MT, Shi L (2014) J Heat Transf 136:032401Google Scholar
  63. 63.
    Shi L, Majumdar A (2002) J Heat Transf 124:329Google Scholar
  64. 64.
    Nguyen K, Merchiers O, Chapuis P-O (2017) J Quant Spectrosc Radiat Transf 202:154–167Google Scholar
  65. 65.
    Xu J-B, Läuger K, Möller R, Dransfeld K, Wilson I (1994) J Appl Phys 76:7209–7216Google Scholar
  66. 66.
    Saci A, Battaglia JL, De I (2015) IEEE Trans Nanotechnol 14:1035–1039Google Scholar
  67. 67.
    Lefèvre S, Volz S, Saulnier J-B, Fuentes C, Trannoy N (2003) Rev Sci Instrum 74:2418–2423Google Scholar
  68. 68.
    Klapetek P, Martinek J, Grolich P, Valtr M, Kaur NJ (2017) Int J Heat Mass Transf 108:841–850Google Scholar
  69. 69.
    El Sachat A, Reparaz J, Spiece J, Alonso M, Goñi A, Garriga M, Vaccaro P, Wagner M, Kolosov O, Torres CS et al (2017) Nanotechnology 28:505704CrossRefGoogle Scholar
  70. 70.
    Martinek J, Valtr M, Cimrman R, Klapetek P (2014) Meas Sci Technol 25:044022Google Scholar
  71. 71.
    Ha M, Graham S (2012) Microelectron Reliab 52:836–844Google Scholar
  72. 72.
    Razavi M, Muzychka YS, Kocabiyik S (2016) J Thermophys Heat Transf 30:863–879Google Scholar
  73. 73.
    Dryden J (1983) J Heat Transf 105:408–410Google Scholar
  74. 74.
    Yovanovich MM, Culham JR, Teertstra P (1998) IEEE Trans Compon Packag Manuf Technol: Part A 21:168–176Google Scholar
  75. 75.
    Muzychka YS, Sridhar MR, Yovanovich MM, Antonetti VW (1999) J Thermophys Heat Transf 13:489–494Google Scholar
  76. 76.
    Muzychka YS, Yovanovich MM, Culham JR (2004) J Thermophys Heat Transf 18:45–51Google Scholar
  77. 77.
    Muzychka YS, Bagnall KR, Wang EN (2013) IEEE Trans Compon Packag Manuf Technol 3:1826–1841Google Scholar
  78. 78.
    Muzychka YS (2014) J Thermophys Heat Transf 28:313–319Google Scholar
  79. 79.
    Palisoc AL, Lee CC (1988) J Appl Phys 64:410–415Google Scholar
  80. 80.
    Palisoc AL, Min YJ, Lee CC (1989) J Appl Phys 65:4438–4444Google Scholar
  81. 81.
    Ha MS (2009) Thermal analysis of high power LED arrays. PhD thesis, Georgia Institute of TechnologyGoogle Scholar
  82. 82.
    Muzychka YS, Yovanovich MM (2001) J Heat Transf 123:624Google Scholar
  83. 83.
    Gholami A, Bahrami M (2014) J Thermophys Heat Transf 28:679–686Google Scholar
  84. 84.
    Menges F, Riel H, Stemmer A, Dimitrakopoulos C, Gotsmann B (2013) Phys Rev Lett 111:205901Google Scholar
  85. 85.
    Sadeghi MM, Park S, Huang Y, Akinwande D, Yao Z, Murthy J, Shi L (2016) J Appl Phys 119:235101Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PhysicsLancaster UniversityLancasterEngland, UK

Personalised recommendations