Absorption-Based Query Answering for Expressive Description Logics
- 1.2k Downloads
Abstract
Conjunctive query answering is an important reasoning task for logic-based knowledge representation formalisms, such as Description Logics, to query for instance data that is related in certain ways. Although many knowledge bases use language features of more expressive Description Logics, there are hardly any systems that support full conjunctive query answering for these logics. In fact, existing systems usually impose restrictions on the queries or only compute incomplete results.
In this paper, we present a new approach for answering conjunctive queries that can directly be integrated into existing reasoning systems for expressive Description Logics. The approach reminds of absorption, a well-known preprocessing step that rewrites axioms such that they can be handled more efficiently. In this sense, we rewrite the query such that entailment can dynamically be checked in the dominantly used tableau calculi with minor extensions. Our implementation in the reasoning system Konclude outperforms existing systems even for queries that are restricted to the capabilities of these other systems.
References
- 1.Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications, 2nd edn. Cambridge University Press, Cambridge (2007)zbMATHGoogle Scholar
- 2.Blackburn, P., Seligman, J.: Hybrid languages. J. Logic Lang. Inf. 4(3), 251–272 (1995)MathSciNetCrossRefGoogle Scholar
- 3.Calvanese, D., Eiter, T., Ortiz, M.: Answering regular path queries in expressive description logics: an automata-theoretic approach. In: Proceedings of National Conference on Artificial Intelligence (2007)Google Scholar
- 4.Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: HermiT: an OWL 2 reasoner. J. Autom. Reasoning 53(3), 1–25 (2014)CrossRefGoogle Scholar
- 5.Glimm, B., Horrocks, I., Sattler, U.: Unions of conjunctive queries in SHOQ. In: Proceedings of International Conference on Principles of Knowledge Representation and Reasoning (2008)Google Scholar
- 6.Glimm, B., Kazakov, Y., Kollia, I., Stamou, G.: Lower and upper bounds for SPARQL queries over OWL ontologies. In: Proceedings of National Conference on Artificial Intelligence (2015)Google Scholar
- 7.Glimm, B., Lutz, C., Horrocks, I., Sattler, U.: Conjunctive query answering for the description logic SHIQ. J. Artif. Intell. Res. 31, 157–204 (2008)MathSciNetCrossRefGoogle Scholar
- 8.Grädel, E.: Why are modal logics so robustly decidable? In: Current Trends in Theoretical Computer Science, Entering the 21th Century, vol. 2, pp. 393–408. World Scientific (2001)Google Scholar
- 9.Haarslev, V., Möller, R., Wessel, M.: Querying the semantic web with Racer+nRQL. In: Proceedings of KI-2004 International Workshop on Applications of Description Logics (2004)Google Scholar
- 10.Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proceedings International Conference on Principles of Knowledge Representation and Reasoning. AAAI Press (2006)Google Scholar
- 11.Horrocks, I., Tessaris, S.: Querying the semantic web: a formal approach. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 177–191. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-48005-6_15CrossRefzbMATHGoogle Scholar
- 12.Hudek, A.K., Weddell, G.E.: Binary absorption in tableaux-based reasoning for description logics. In: Proceedings of International Workshop on Description Logics, vol. 189. CEUR (2006)Google Scholar
- 13.Kollia, I., Glimm, B.: Optimizing SPARQL query answering over OWL ontologies. J. Artif. Intell. Res. 48, 253–303 (2013)MathSciNetCrossRefGoogle Scholar
- 14.Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., Liu, S.: Towards a complete OWL ontology benchmark. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 125–139. Springer, Heidelberg (2006). https://doi.org/10.1007/11762256_12CrossRefGoogle Scholar
- 15.Ortiz, M., Calvanese, D., Eiter, T.: Data complexity of query answering in expressive description logics via tableaux. J. Autom. Reasoning 41(1), 61–98 (2008)MathSciNetCrossRefGoogle Scholar
- 16.Pan, J.Z., Thomas, E., Zhao, Y.: Completeness guaranteed approximation for OWL-DL query answering. In: Proceedings of International Workshop on Description Logics, vol. 477. CEUR (2009)Google Scholar
- 17.Parsia, B., Matentzoglu, N., Gonçalves, R.S., Glimm, B., Steigmiller, A.: The OWL reasoner evaluation (ORE) 2015 competition report. J. Autom. Reasoning 59(4), 455–482 (2017)MathSciNetCrossRefGoogle Scholar
- 18.Rudolph, S., Glimm, B.: Nominals, inverses, counting, and conjunctive queries or: why infinity is your friend!. J. Artif. Intell. Res. 39, 429–481 (2010)MathSciNetCrossRefGoogle Scholar
- 19.Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-DL reasoner. J. Web Semant. 5(2), 51–53 (2007)CrossRefGoogle Scholar
- 20.Steigmiller, A., Glimm, B.: Absorption-based query answering for expressive description logics - technical report. Technical report, Ulm University, Ulm, Germany (2019). https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.090/Publikationen/2019/StGl2019-ABQA-TR-ISWC.pdf
- 21.Steigmiller, A., Glimm, B., Liebig, T.: Reasoning with nominal schemas through absorption. J. Autom. Reason. 53(4), 351–405 (2014)MathSciNetCrossRefGoogle Scholar
- 22.Steigmiller, A., Liebig, T., Glimm, B.: Konclude: system description. J. Web Semantics 27(1), 78–85 (2014)CrossRefGoogle Scholar
- 23.Stoilos, G., Stamou, G.: Hybrid query answering over OWL ontologies. In: Proceedings of European Conference on Artificial Intelligence (2014)Google Scholar
- 24.Vardi, M.Y.: Why is modal logic so robustly decidable? In: Proceedings of DIMACS Workshop on Descriptive Complexity and Finite Models, vol. 31. American Mathematical Society (1997)Google Scholar
- 25.Zhou, Y., Cuenca Grau, B., Nenov, Y., Kaminski, M., Horrocks, I.: PAGOdA: pay-as-you-go ontology query answering using a datalog reasoner. J. Artif. Intell. Res. 54, 309–367 (2015)MathSciNetCrossRefGoogle Scholar