Advertisement

Entity Enabled Relation Linking

  • Jeff Z. PanEmail author
  • Mei Zhang
  • Kuldeep Singh
  • Frank van Harmelen
  • Jinguang Gu
  • Zhi Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11778)

Abstract

Relation linking is an important problem for knowledge graph-based Question Answering. Given a natural language question and a knowledge graph, the task is to identify relevant relations from the given knowledge graph. Since existing techniques for entity extraction and linking are more stable compared to relation linking, our idea is to exploit entities extracted from the question to support relation linking. In this paper, we propose a novel approach, based on DBpedia entities, for computing relation candidates. We have empirically evaluated our approach on different standard benchmarks. Our evaluation shows that our approach significantly outperforms existing baseline systems in both recall, precision and runtime.

Keywords

Question answering Semantic Web Semantic search Predicate linking Knowledge Graph 

Notes

Acknowledegments

This work has been supported by the National Natural Science Foundation of China (61673304) and the Key Projects of National Social Science Foundation of China (11&ZD189).

References

  1. 1.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-76298-0_52CrossRefGoogle Scholar
  2. 2.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)Google Scholar
  3. 3.
    Banerjee, D., Dubey, M., Chaudhuri, D., Lehmann, J.: Joint entity and relation linking using EARL. In: ISWC (2018)Google Scholar
  4. 4.
    Bast, H., Haussmann, E.: More accurate question answering on freebase. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, CIKM 2015, pp. 1431–1440. ACM, New York (2015)Google Scholar
  5. 5.
    Bollacker, K.D., Cook, R.P., Tufts, P.: Freebase: a shared database of structured general human knowledge. In: AAAI (2007)Google Scholar
  6. 6.
    Bordes, A., Usunier, N., Chopra, S., Weston, J.: Large-Scale Simple Question Answering with Memory Networks. CoRR, abs/1506.02075 (2015)Google Scholar
  7. 7.
    Both, A., Diefenbach, D., Singh, K., Shekarpour, S., Cherix, D., Lange, C.: Qanary – a methodology for vocabulary-driven open question answering systems. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 625–641. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-34129-3_38CrossRefGoogle Scholar
  8. 8.
    Dai, Z., Li, L., Xu, W.: CFO: conditional focused neural question answering with large-scale knowledge bases. In: ACL (2016)Google Scholar
  9. 9.
    Fawei, B.J., Pan, J.Z., Kollingbaum, M.J., Wyner, A.Z.: A criminal law and procedure ontology for legal question answering. In: JIST (2018)Google Scholar
  10. 10.
    Ferragina, P., Scaiella, U.: TAGME: on-the-fly annotation of short text fragments (by Wikipedia entities). In: CIKM, pp. 1625–1628 (2010)Google Scholar
  11. 11.
    Gerber, D., Ngomo, A.-C.N.: Bootstrapping the linked data web. In: 1st Workshop on Web Scale Knowledge Extraction@ ISWC (2011)Google Scholar
  12. 12.
    Höffner, K., Walter, S., Marx, E., Usbeck, R., Lehmann, J., Ngomo, A.-C.N.: Survey on challenges of question answering in the semantic web. In: Semantic Web (2017)Google Scholar
  13. 13.
    Hogan, A., Pan, J.Z., Polleres, A., Decker, S.: SAOR: template rule optimisations for distributed reasoning over 1 billion linked data triples. In: Patel-Schneider, P.F., et al. (eds.) ISWC 2010. LNCS, vol. 6496, pp. 337–353. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-17746-0_22CrossRefGoogle Scholar
  14. 14.
    Kim, J., Choi, G., Kim, J.-U., Kim, E.-K., Choi, K.-S.: The open framework for developing knowledge base and question answering system. In: COLING, pp. 161–165 (2016)Google Scholar
  15. 15.
    Lecue, F., Pan, J.Z.: Consistent knowledge discovery from evolving ontologies. In: Proceedings of 29th AAAI Conference on Artificial Intelligence (AAAI-2015) (2015)Google Scholar
  16. 16.
    Lukovnikov, D., Fischer, A., Lehmann, J., Auer, S.: Neural network-based question answering over knowledge graphs on word and character level. In: WebConf, pp. 1211–1220 (2017)Google Scholar
  17. 17.
    Mendes, P.N., Jakob, M., García-Silva, A., Bizer, C.: DBpedia spotlight: shedding light on the web of documents. In: I-SEMANTICS, pp. 1–8 (2011)Google Scholar
  18. 18.
    Mulang, I.O., Singh, K., Orlandi, F.: Matching natural language relations to knowledge graph properties for question answering. In: Semantics (2017)Google Scholar
  19. 19.
    Mulwad, V., Finin, T., Joshi, A.: Semantic message passing for generating linked data from tables. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 363–378. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41335-3_23 CrossRefGoogle Scholar
  20. 20.
    Nakashole, N., Weikum, G., Suchanek, F.M.: PATTY: a taxonomy of relational patterns with semantic types. In: EMNLP-CoNLL (2012)Google Scholar
  21. 21.
    Pan, J.Z., Ren, Y., Zhao, Y.: Tractable approximate deduction for OWL. Artif. Intell. 95–155MathSciNetCrossRefGoogle Scholar
  22. 22.
    Pan, J.Z., Thomas, E.: Approximating OWL-DL ontologies. In: The Proceedings of the 22nd National Conference on Artificial Intelligence (AAAI-2007), pp. 1434–1439 (2007)Google Scholar
  23. 23.
    Pan, J.Z., et al. (eds.): Reasoning Web: Logical Foundation of Knowledge Graph Construction and Querying Answering. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-319-49493-7CrossRefGoogle Scholar
  24. 24.
    Pan, J.Z., Vetere, G., Gomez-Perez, J.M., Wu, H. (eds.): Exploiting Linked Data and Knowledge Graphs for Large Organisations. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-319-45654-6CrossRefGoogle Scholar
  25. 25.
    Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)Google Scholar
  26. 26.
    Singh, K.: Towards dynamic composition of question answering pipelines. Ph.D. thesis, University of Bonn, Germany (2019)Google Scholar
  27. 27.
    Singh, K., Both, A., Sethupat, A., Shekarpour, S.: Frankenstein: a platform enabling reuse of question answering components. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 624–638. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-93417-4_40CrossRefGoogle Scholar
  28. 28.
    Singh, K., Lytra, I., Radhakrishna, A.S., Shekarpour, S., Vidal, M.-E., Lehmann, J.: No one is perfect: analysing the performance of question answering components over the DBpedia knowledge graph. CoRR, abs/1809.10044 (2018)Google Scholar
  29. 29.
    Singh, K., et al.: QAestro – semantic-based composition of question answering pipelines. In: Benslimane, D., Damiani, E., Grosky, W.I., Hameurlain, A., Sheth, A., Wagner, R.R. (eds.) DEXA 2017. LNCS, vol. 10438, pp. 19–34. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-64468-4_2CrossRefGoogle Scholar
  30. 30.
    Singh, K., et al.: Capturing knowledge in semantically-typed relational patterns to enhance relation linking. In: K-CAP, pp. 31:1–31:8 (2017)Google Scholar
  31. 31.
    Singh, K., et al.: Why reinvent the wheel: let’s build question answering systems together. In: WebConf, pp. 1247–1256 (2018)Google Scholar
  32. 32.
    Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: WWW, pp. 697–706 (2007)Google Scholar
  33. 33.
    Thomas, E., Pan, J.Z., Ren, Y.: TrOWL: tractable OWL 2 reasoning infrastructure. In: Aroyo, L., et al. (eds.) The Semantic Web: Research and Applications, ESWC 2010. Lecture Notes in Computer Science, vol. 6089, pp. 431–435. Springer, Berlin (2010).  https://doi.org/10.1007/978-3-642-13489-0_38CrossRefGoogle Scholar
  34. 34.
    Trivedi, P., Maheshwari, G., Dubey, M., Lehmann, J.: LC-QuAD: a corpus for complex question answering over knowledge graphs. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 210–218. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68204-4_22CrossRefGoogle Scholar
  35. 35.
    Unger, C., Bühmann, L., Lehmann, J., Ngomo, A.-C.N., Gerber, D., Cimiano, P.: Template-based question answering over RDF data. In: WebConf, pp. 639–648. ACM (2012)Google Scholar
  36. 36.
    Usbeck, R., et al.: AGDISTIS - graph-based disambiguation of named entities using linked data. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 457–471. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11964-9_29CrossRefGoogle Scholar
  37. 37.
    Vrandecic, D., Krötzsch, M.: Wikidata: a free collaborative knowledge base. Commun. ACM 57(10), 78–85 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jeff Z. Pan
    • 1
    • 2
    • 3
    Email author
  • Mei Zhang
    • 1
  • Kuldeep Singh
    • 4
  • Frank van Harmelen
    • 5
  • Jinguang Gu
    • 1
  • Zhi Zhang
    • 1
  1. 1.College of Computer Science and TechnologyWuhan University of Science and TechnologyWuhanChina
  2. 2.Department of Computer ScienceThe University of AberdeenAberdeenUK
  3. 3.Edinburgh Research Centre, HuaweiEdinburghUK
  4. 4.Nuance Communications Deutschland GmbHMunichGermany
  5. 5.Vrije Universiteit AmsterdamAmsterdamThe Netherlands

Personalised recommendations