Uncovering the Semantics of Wikipedia Categories

  • Nicolas HeistEmail author
  • Heiko Paulheim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11778)


The Wikipedia category graph serves as the taxonomic backbone for large-scale knowledge graphs like YAGO or Probase, and has been used extensively for tasks like entity disambiguation or semantic similarity estimation. Wikipedia’s categories are a rich source of taxonomic as well as non-taxonomic information. The category German science fiction writers, for example, encodes the type of its resources (Writer), as well as their nationality (German) and genre (Science Fiction). Several approaches in the literature make use of fractions of this encoded information without exploiting its full potential. In this paper, we introduce an approach for the discovery of category axioms that uses information from the category network, category instances, and their lexicalisations. With DBpedia as background knowledge, we discover 703k axioms covering 502k of Wikipedia’s categories and populate the DBpedia knowledge graph with additional 4.4M relation assertions and 3.3M type assertions at more than 87% and 90% precision, respectively.


Knowledge graph completion Wikipedia category graph Ontology learning DBpedia 


  1. 1.
    Aprosio, A.P., Giuliano, C., Lavelli, A.: Extending the coverage of DBpedia properties using distant supervision over Wikipedia. In: NLP-DBpedia@ ISWC (2013)Google Scholar
  2. 2.
    Bryl, V., Bizer, C., Paulheim, H.: Gathering alternative surface forms for DBpedia entities. In: Workshop on NLP&DBpedia, pp. 13–24 (2015)Google Scholar
  3. 3.
    Färber, M., Bartscherer, F., Menne, C., Rettinger, A.: Linked data quality of DBpedia, Freebase, OpenCyc, Wikidata, and YAGO. Semant. Web 9, 1–53 (2016)Google Scholar
  4. 4.
    Flati, T., et al.: Two is bigger (and better) than one: the Wikipedia bitaxonomy project. In: 52nd Annual Meeting of the ACL, vol. 1, pp. 945–955 (2014)Google Scholar
  5. 5.
    Fleiss, J.L.: Measuring nominal scale agreement among many raters. Psychol. Bull. 76(5), 378 (1971) CrossRefGoogle Scholar
  6. 6.
    Fossati, M., Kontokostas, D., Lehmann, J.: Unsupervised learning of an extensive and usable taxonomy for DBpedia. In: 11th International Conference on Semantic Systems, pp. 177–184. ACM (2015)Google Scholar
  7. 7.
    Gerber, D., Ngomo, A.C.N.: Bootstrapping the linked data web. In: 1st Workshop on Web Scale Knowledge Extraction@ ISWC, vol. 2011 (2011)Google Scholar
  8. 8.
    Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: 14th Conference on Computational Linguistics, vol. 2, pp. 539–545 (1992)Google Scholar
  9. 9.
    Heist, N., Hertling, S., Paulheim, H.: Language-agnostic relation extraction from abstracts in Wikis. Information 9(4), 75 (2018)CrossRefGoogle Scholar
  10. 10.
    Hertling, S., Paulheim, H.: WebIsALOD: providing hypernymy relations extracted from the Web as linked open data. In: d’Amato, C., Fernandez, M., Tamma, V., Lecue, F., Cudré-Mauroux, P., Sequeda, J., Lange, C., Heflin, J. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 111–119. Springer, Cham (2017). Scholar
  11. 11.
    Hertling, S., Paulheim, H.: DBkWik: a consolidated knowledge graph from thousands of Wikis. In: IEEE International Conference on Big Knowledge, ICBK (2018)Google Scholar
  12. 12.
    Kozareva, Z., Hovy, E.: Learning arguments and supertypes of semantic relations using recursive patterns. In: 48th Annual Meeting of the ACL, pp. 1482–1491. ACL (2010)Google Scholar
  13. 13.
    Kuhn, P., Mischkewitz, S., et al.: Type inference on Wikipedia list pages. Informatik 46, 2101–2111 (2016)Google Scholar
  14. 14.
    Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data. Biometrics 33, 159–174 (1977) CrossRefGoogle Scholar
  15. 15.
    Lehmann, J.: DL-learner: learning concepts in description logics. J. Mach. Learn. Res. 10(Nov), 2639–2642 (2009)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Lehmann, J., Isele, R., Jakob, M., et al.: Dbpedia-a large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web 6(2), 167–195 (2015)Google Scholar
  17. 17.
    Liu, Q., Xu, K., Zhang, L., Wang, H., Yu, Y., Pan, Y.: Catriple: extracting triples from wikipedia categories. In: Domingue, J., Anutariya, C. (eds.) ASWC 2008. LNCS, vol. 5367, pp. 330–344. Springer, Heidelberg (2008). Scholar
  18. 18.
    Mahdisoltani, F., Biega, J., Suchanek, F.M.: YAGO3: a knowledge base from multilingual Wikipedias. In: CIDR (2013)Google Scholar
  19. 19.
    Mintz, M., Bills, S., et al.: Distant supervision for relation extraction without labeled data. ACL-AFNLP 2, 1003–1011 (2009)Google Scholar
  20. 20.
    Muñoz, E., Hogan, A., Mileo, A.: Triplifying Wikipedia’s tables. In: LD4IE@ ISWC, vol. 1057 (2013)Google Scholar
  21. 21.
    Nastase, V., Strube, M.: Decoding Wikipedia categories for knowledge acquisition. AAAI 8, 1219–1224 (2008)Google Scholar
  22. 22.
    Paulheim, H.: Knowledge graph refinement: a survey of approaches and evaluation methods. Semant. Web 8(3), 489–508 (2017)CrossRefGoogle Scholar
  23. 23.
    Paulheim, H., Bizer, C.: Type inference on noisy RDF data. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 510–525. Springer, Heidelberg (2013). CrossRefGoogle Scholar
  24. 24.
    Paulheim, H., Ponzetto, S.P.: Extending DBpedia with Wikipedia list pages. NLP-DBpedia ISWC 13, 1–6 (2013)Google Scholar
  25. 25.
    Ponzetto, S.P., Strube, M.: Deriving a large scale taxonomy from Wikipedia. AAAI 7, 1440–1445 (2007)Google Scholar
  26. 26.
    Rettinger, A., Lösch, U., Tresp, V., d’Amato, C., Fanizzi, N.: Mining the semantic web. Data Min. Knowl. Discov. 24(3), 613–662 (2012)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Ringler, D., Paulheim, H.: One knowledge graph to rule them all? Analyzing the differences between DBpedia, YAGO, Wikidata & co. In: Kern-Isberner, G., Fürnkranz, J., Thimm, M. (eds.) KI 2017. LNCS, vol. 10505. Springer, Heidelberg (2017). Scholar
  28. 28.
    Ritze, D., Lehmberg, O., Bizer, C.: Matching HTML tables to DBpedia. In: 5th International Conference on Web Intelligence, Mining and Semantics, p. 10. ACM, New York (2015)Google Scholar
  29. 29.
    Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge. In: 16th International Conference on World Wide Web, pp. 697–706. ACM (2007)Google Scholar
  30. 30.
    Velardi, P., Faralli, S., Navigli, R.: OntoLearn reloaded: a graph-based algorithm for taxonomy induction. Comput. Linguist. 39(3), 665–707 (2013)CrossRefGoogle Scholar
  31. 31.
    Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014)CrossRefGoogle Scholar
  32. 32.
    Xu, B., Xie, C., et al.: Learning defining features for categories. In: IJCAI, pp. 3924–3930 (2016)Google Scholar
  33. 33.
    Zaveri, A., Rula, A., Maurino, A., et al.: Quality assessment for linked data: a survey. Semant. Web 7(1), 63–93 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Data and Web Science GroupUniversity of MannheimMannheimGermany

Personalised recommendations